×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Applying Bayesian neural networks to identify pion, kaon and proton in BESⅡ

  • The Monte-Carlo samples of pion, kaon and proton generated from 0.3GeV/c to 1.2GeV/c by the `tester' generator from SIMBES which are used to simulate the detector of BESⅡ are identified with the Bayesian neural networks (BNN). The pion identification and misidentification efficiencies are obviously better at high momentum region using BNN than the methods of χ2 analysis of dE/dX and TOF information. The kaon identification and misidentification efficiencies are obviously better from 0.3GeV/c to 1.2GeV/c using BNN than the methods of χ2 analysis. The proton identification and misidentification efficiencies using BNN are basically consistent with the ones of χ2 analysis. The anti-proton identification and misidentification efficiencies are better below 0.6GeV/c using BNN than the methods of χ2 analysis.

  • 加载中
  • [1] . BAI J Z et al. (BES Collaboration). Nucl. Instrum. Methods A, 2001, 458: 6272. Neal R M. Bayesian Learning of Neural Networks. New York: Springer-Verlag, 19963. Beale R, Jackson T. Neural Computing: An Introduction.New York: Adam Hilger, 19914. QIN Hu et al. HEP NP, 2004, 28(7): 738-743 (in Chi-nese)5. Bhat P C, Prosper H P. Bayesian Neural Networks. In:Lyons L, Unel M K ed. Proceedings of Statistical Problems in Particle Physics, Astrophysics and Cosmology, Oxford,UK 12-15, September 2005. London: Imperial college Press.2006. 151-1546. Duane S, Kennedy A D, Pendleton B J et al. Physics Letters B, 1987, 195: 216-2227. Creutz M, Gocksch A. Physical Review Letters, 1989, 63:9-128. Mackenzie P B. Physics Letters B, 1989, 226: 369-3719. Ablikim M et al. (BES Collaboration). Nucl. Instrum. Methods A, 2005, 552: 344
  • 加载中

Get Citation
XU Ye, HOU Jian and ZHU Kai-En. Applying Bayesian neural networks to identify pion, kaon and proton in BESⅡ[J]. Chinese Physics C, 2008, 32(3): 201-204. doi: 10.1088/1674-1137/32/3/008
XU Ye, HOU Jian and ZHU Kai-En. Applying Bayesian neural networks to identify pion, kaon and proton in BESⅡ[J]. Chinese Physics C, 2008, 32(3): 201-204.  doi: 10.1088/1674-1137/32/3/008 shu
Milestone
Received: 2007-05-28
Revised: 2007-06-14
Article Metric

Article Views(3211)
PDF Downloads(705)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Applying Bayesian neural networks to identify pion, kaon and proton in BESⅡ

    Corresponding author: XU Ye,

Abstract: 

The Monte-Carlo samples of pion, kaon and proton generated from 0.3GeV/c to 1.2GeV/c by the `tester' generator from SIMBES which are used to simulate the detector of BESⅡ are identified with the Bayesian neural networks (BNN). The pion identification and misidentification efficiencies are obviously better at high momentum region using BNN than the methods of χ2 analysis of dE/dX and TOF information. The kaon identification and misidentification efficiencies are obviously better from 0.3GeV/c to 1.2GeV/c using BNN than the methods of χ2 analysis. The proton identification and misidentification efficiencies using BNN are basically consistent with the ones of χ2 analysis. The anti-proton identification and misidentification efficiencies are better below 0.6GeV/c using BNN than the methods of χ2 analysis.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return