Three-body force and the tetraquark interpretation of light scalar mesons

  • We study the possible tetraquark interpretation of light scalar meson states a0(980), f0(980), κ,σ within the framework of the non-relativistic potential model. The wave functions of tetraquark states are obtained in a space spanned by
    multiple Gaussian functions. We find that the mass spectra of the light scalar mesons can be well accommodated in the tetraquark picture if we introduce a three-body quark interaction in the quark model. Using the obtained multiple Gaussian wave functions, the decay constants of tetraquarks are also calculated within the ``fall apart'' mechanism.

  • [1] . Jaffe R L. Phys. Rev. D, 1977, 15: 2672. Jaffe R L. Phys. Rev. D, 1977, 15: 2813. Aitala E M et al. (E791). Phys. Rev. Lett., 2001, 86: 770-774. hep-ex/00070284. Link J M et al. (FOCUS). Phys. Lett. B, 2004, 585: 200-212. hep-ex/03120405. Aitala E M et al. (E791). Phys. Rev. Lett., 2001, 86: 765-769. hep-ex/00070276. Ablikim M et al. (BES). Phys. Lett. B, 2004, 598: 149-158. hep-ex/04060387. Ablikim M et al. (BES). Phys. Lett. B, 2006, 633: 681-690. hep-ex/05060558. Maiani L, Piccinini F, Polosa A D, Riquer V. Phys. Rev.Lett., 2004, 93: 212002. hep-ph/04070179. Bugg D V. Eur. Phys. J. C, 2006, 47: 57-64. hep-ph/060308910. Giacosa F. Phys. Rev. D, 2007, 75: 054007. hep-ph/061138811. Dmitrasinovic V. Phys. Rev. D, 2003, 67: 11400712. Pepin S, Stancu F. Phys. Rev. D, 2002, 65: 054032. hep-ph/010523213. Janc D, Rosina M. Few Body Syst., 2004, 35: 175-196.hep-ph/040520814. Bhaduri R K, Cohler L E, Nogami Y. Nuovo Cim. A, 1981,65: 376-39015. Zouzou S, Silvestre-Brac B, Gignoux C, Richard J M. Z.Phys. C, 1986, 30: 45716. Silvestre-Brac B, Semay C. Z. Phys. C, 1993, 57: 273-28217. Brink D M, Stancu F. Phys. Rev. D, 1998, 57: 6778-678718. Vijande J, Fernandez F, Valcarce A, Silvestre-Brac B. Eur.Phys. J. A, 2004, 19: 383. hep-ph/031000719. AlfordM G, Ja e R L. Nucl. Phys. B, 2000, 578: 367-382.hep-lat/000102320. Suzuki Y, Varga K. Lect. Notes Phys. M, 1998, 54: 1-31021. Silvestre-Brac B, Mathieu V. 2007. arXiv:0706.2300 [hep-ph]22. Amsler C et al. (Crystal Barrel). Phys. Lett. B, 1992, 294:451-45623. YAO W M et al. (Particle Data Group). J. Phys. G, 2006,33: 1-123224. Maiani L, Piccinini F, Polosa A D, Riquer V. Phys. Rev.D, 2005, 71: 014028. hep-ph/041209825. Giacosa F. Phys. Rev. D, 2006, 74: 014028. hep-ph/060519126. Bugg D V. 2005. hep-ex/051001427. Bugg D V. Eur. Phys. J. C, 2006, 47: 45-55. hep-ex/060302328. Bugg D V. Phys. Lett. B, 2006, 632: 471-474. hep-ex/0510019
  • [1] . Jaffe R L. Phys. Rev. D, 1977, 15: 2672. Jaffe R L. Phys. Rev. D, 1977, 15: 2813. Aitala E M et al. (E791). Phys. Rev. Lett., 2001, 86: 770-774. hep-ex/00070284. Link J M et al. (FOCUS). Phys. Lett. B, 2004, 585: 200-212. hep-ex/03120405. Aitala E M et al. (E791). Phys. Rev. Lett., 2001, 86: 765-769. hep-ex/00070276. Ablikim M et al. (BES). Phys. Lett. B, 2004, 598: 149-158. hep-ex/04060387. Ablikim M et al. (BES). Phys. Lett. B, 2006, 633: 681-690. hep-ex/05060558. Maiani L, Piccinini F, Polosa A D, Riquer V. Phys. Rev.Lett., 2004, 93: 212002. hep-ph/04070179. Bugg D V. Eur. Phys. J. C, 2006, 47: 57-64. hep-ph/060308910. Giacosa F. Phys. Rev. D, 2007, 75: 054007. hep-ph/061138811. Dmitrasinovic V. Phys. Rev. D, 2003, 67: 11400712. Pepin S, Stancu F. Phys. Rev. D, 2002, 65: 054032. hep-ph/010523213. Janc D, Rosina M. Few Body Syst., 2004, 35: 175-196.hep-ph/040520814. Bhaduri R K, Cohler L E, Nogami Y. Nuovo Cim. A, 1981,65: 376-39015. Zouzou S, Silvestre-Brac B, Gignoux C, Richard J M. Z.Phys. C, 1986, 30: 45716. Silvestre-Brac B, Semay C. Z. Phys. C, 1993, 57: 273-28217. Brink D M, Stancu F. Phys. Rev. D, 1998, 57: 6778-678718. Vijande J, Fernandez F, Valcarce A, Silvestre-Brac B. Eur.Phys. J. A, 2004, 19: 383. hep-ph/031000719. AlfordM G, Ja e R L. Nucl. Phys. B, 2000, 578: 367-382.hep-lat/000102320. Suzuki Y, Varga K. Lect. Notes Phys. M, 1998, 54: 1-31021. Silvestre-Brac B, Mathieu V. 2007. arXiv:0706.2300 [hep-ph]22. Amsler C et al. (Crystal Barrel). Phys. Lett. B, 1992, 294:451-45623. YAO W M et al. (Particle Data Group). J. Phys. G, 2006,33: 1-123224. Maiani L, Piccinini F, Polosa A D, Riquer V. Phys. Rev.D, 2005, 71: 014028. hep-ph/041209825. Giacosa F. Phys. Rev. D, 2006, 74: 014028. hep-ph/060519126. Bugg D V. 2005. hep-ex/051001427. Bugg D V. Eur. Phys. J. C, 2006, 47: 45-55. hep-ex/060302328. Bugg D V. Phys. Lett. B, 2006, 632: 471-474. hep-ex/0510019
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
ZOU Fan-Yong, CHEN Xiao-Lin and DENG Wei-Zhen. Three-body force and the tetraquark interpretation of light scalar mesons[J]. Chinese Physics C, 2008, 32(7): 515-520. doi: 10.1088/1674-1137/32/7/002
ZOU Fan-Yong, CHEN Xiao-Lin and DENG Wei-Zhen. Three-body force and the tetraquark interpretation of light scalar mesons[J]. Chinese Physics C, 2008, 32(7): 515-520.  doi: 10.1088/1674-1137/32/7/002 shu
Milestone
Received: 2007-10-24
Revised: 2008-02-18
Article Metric

Article Views(3659)
PDF Downloads(657)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Three-body force and the tetraquark interpretation of light scalar mesons

    Corresponding author: DENG Wei-Zhen,

Abstract: 

We study the possible tetraquark interpretation of light scalar meson states a0(980), f0(980), κ,σ within the framework of the non-relativistic potential model. The wave functions of tetraquark states are obtained in a space spanned by
multiple Gaussian functions. We find that the mass spectra of the light scalar mesons can be well accommodated in the tetraquark picture if we introduce a three-body quark interaction in the quark model. Using the obtained multiple Gaussian wave functions, the decay constants of tetraquarks are also calculated within the ``fall apart'' mechanism.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return