Quantitative conditions for the formation of p-wave neutron halos

  • With the experimental binding energies and configurations, the root-mean-square radii of p-wave valence neutron distributions for nuclei up to the second p-shell have been calculated in the framework of the single-particle potential model. By analyzing the relations between the radii and the binding energies, the scaling laws of p-wave valence neutron distributions are obtained. The quantitative conditions for the formation of p-wave neutron halos are deduced from these scaling laws. Based on the investigation on the probability of finding the valence nucleon outside the range of the interaction potential, a 2p3/2 halo state in 47S is anticipated for the first time. These obtained results might provide reference for searching for p-wave neutron halos in nuclei up to the second p-shell.
  • [1] PEI J C, XU F R, Stevenson P D. Nucl. Phys. A, 2006, 765: 292 GUO Y Q, REN Z Z. HEP NP, 2007, 31: 361 (in Chinese)3 GUO Y Q, REN Z Z, CHEN Y Q. Commun. Theor. Phys., 2008, 50: 13964 Ershov S N, Danilin B V, Vaagen J S. Phys. Rev. C, 2006, 74: 0146035 LIU J Y, GUO W J, REN Z Z et al. HEP NP, 2006, 30: 317 (in Chinese)6 CAI X Z, ZHANG H Y, SHEN W Q et al. Phys. Rev. C, 2002, 65: 0246107 FANG D Q, GUO W, MA C W et al. Phys. Rev. C, 2007, 76: 031601(R)8 Hansen P G, Jensen A S. Annu. Rev. Nucl. Part. Sci.,1995, 45: 5919 Riisager K, Jensen A S, Mller P. Nucl. Phys. A, 1992, 548: 39310 Fedorov D V, Jensen A S, Riisager K. Phys. Rev. C, 1994, 49: 201; 1994, 50: 2372; Phys. Lett. B, 1993, 312: 111 Jensen A S, Riisager K. Phys. Lett. B, 2000, 480: 3912 Riisager K, Fedorov D V, Jensen A S. Europhys. Lett., 2000, 49: 54713 LIU Z H, ZHANG X Z, ZHANG H Q. Phys. Rev. C, 2003, 68: 02430514 LIN C J, ZHANG H Q, LIU Z H et al. Phys. Rev. C, 2002, 66: 06730215 SHI Y, MA Y G, CHEN J G, FANG D Q et al. HEP NP, 2006, 30: 180 (in Chinese)16 Bohr A, Mottelson B R. Nuclear Structure (Vol. I). Singapore: World Scienti c Publishing, 1998. 236-24017 Satchler G R. Direct Nuclear Reactions. New York: Oxford University Press, 198318 Hamamoto I, ZHANG X Z. Phys. Rev. C, 1998, 58: 338819 LIN C J, ZHANG H Q, LIU Z H et al. Chin. Phys. Soc., 2003, 52: 82320 Audi G et al. Nucl. Phys. A, 2003, 729: 321 Audi G et al. Nucl. Phys. A, 2003, 729: 337
  • [1] PEI J C, XU F R, Stevenson P D. Nucl. Phys. A, 2006, 765: 292 GUO Y Q, REN Z Z. HEP NP, 2007, 31: 361 (in Chinese)3 GUO Y Q, REN Z Z, CHEN Y Q. Commun. Theor. Phys., 2008, 50: 13964 Ershov S N, Danilin B V, Vaagen J S. Phys. Rev. C, 2006, 74: 0146035 LIU J Y, GUO W J, REN Z Z et al. HEP NP, 2006, 30: 317 (in Chinese)6 CAI X Z, ZHANG H Y, SHEN W Q et al. Phys. Rev. C, 2002, 65: 0246107 FANG D Q, GUO W, MA C W et al. Phys. Rev. C, 2007, 76: 031601(R)8 Hansen P G, Jensen A S. Annu. Rev. Nucl. Part. Sci.,1995, 45: 5919 Riisager K, Jensen A S, Mller P. Nucl. Phys. A, 1992, 548: 39310 Fedorov D V, Jensen A S, Riisager K. Phys. Rev. C, 1994, 49: 201; 1994, 50: 2372; Phys. Lett. B, 1993, 312: 111 Jensen A S, Riisager K. Phys. Lett. B, 2000, 480: 3912 Riisager K, Fedorov D V, Jensen A S. Europhys. Lett., 2000, 49: 54713 LIU Z H, ZHANG X Z, ZHANG H Q. Phys. Rev. C, 2003, 68: 02430514 LIN C J, ZHANG H Q, LIU Z H et al. Phys. Rev. C, 2002, 66: 06730215 SHI Y, MA Y G, CHEN J G, FANG D Q et al. HEP NP, 2006, 30: 180 (in Chinese)16 Bohr A, Mottelson B R. Nuclear Structure (Vol. I). Singapore: World Scienti c Publishing, 1998. 236-24017 Satchler G R. Direct Nuclear Reactions. New York: Oxford University Press, 198318 Hamamoto I, ZHANG X Z. Phys. Rev. C, 1998, 58: 338819 LIN C J, ZHANG H Q, LIU Z H et al. Chin. Phys. Soc., 2003, 52: 82320 Audi G et al. Nucl. Phys. A, 2003, 729: 321 Audi G et al. Nucl. Phys. A, 2003, 729: 337
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
GUO Yan-Qing and SONG Jie. Quantitative conditions for the formation of p-wave neutron halos[J]. Chinese Physics C, 2011, 35(2): 158-162. doi: 10.1088/1674-1137/35/2/010
GUO Yan-Qing and SONG Jie. Quantitative conditions for the formation of p-wave neutron halos[J]. Chinese Physics C, 2011, 35(2): 158-162.  doi: 10.1088/1674-1137/35/2/010 shu
Milestone
Received: 2010-05-02
Revised: 2010-07-13
Article Metric

Article Views(2682)
PDF Downloads(492)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quantitative conditions for the formation of p-wave neutron halos

Abstract: With the experimental binding energies and configurations, the root-mean-square radii of p-wave valence neutron distributions for nuclei up to the second p-shell have been calculated in the framework of the single-particle potential model. By analyzing the relations between the radii and the binding energies, the scaling laws of p-wave valence neutron distributions are obtained. The quantitative conditions for the formation of p-wave neutron halos are deduced from these scaling laws. Based on the investigation on the probability of finding the valence nucleon outside the range of the interaction potential, a 2p3/2 halo state in 47S is anticipated for the first time. These obtained results might provide reference for searching for p-wave neutron halos in nuclei up to the second p-shell.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return