Particle-number conserving analysis for the 2-quasiparticle and high-K multi-quasiparticle states in doubly-odd 174,176Lu

  • Two-quasiparticle bands and low-lying excited high-K four-, six-, and eight-quasiparticle bands in the doubly-odd 174, 176Lu are analyzed by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. The proton and neutron Nilsson level schemes for 174, 176Lu are taken from the adjacent odd-A Lu and Hf isotopes, which are adopted to reproduce the experimental bandhead energies of the one-quasiproton and one-quasineutron bands of these odd-A Lu and Hf nuclei, respectively. Once the quasiparticle configurations are determined, the experimental bandhead energies and the moments of inertia of these two- and multi-quasiparticle bands are well reproduced by PNC-CSM calculations. The Coriolis mixing of the low-K (K=|Ω1-Ω2|) two-quasiparticle band of the Gallagher-Moszkowski doublet with one nucleon in the Ω = 1/2 orbital is analyzed.
      PCAS:
  • 加载中
  • [1] Gallagher C J, Moszkowski S A. Phys. Rev., 1958, 111: 1282-1290[2] Newby N D. Phys. Rev., 1962, 125: 2063-2070[3] Frauendorf S, MENG J. Nucl. Phys. A, 1997, 617: 131-147[4] Kreiner A J, Mariscotti M A J. Phys. Rev. Lett., 1979, 43: 1150-1153[5] Kreiner A J, Mariscotti M A J. J. Phys. G: Nucl. Phys., 1980, 6: L13-L16[6] Boisson J, Piepenbring R, Ogle W. Phys. Rep., 1976, 26: 99-147[7] Bengtsson R, Frisk H, May F R, Pinston J A. Nucl. Phys. A, 1984, 415: 189-214[8] Frisk H. Z. Phys. A, 1988, 330: 241-248[9] Hara K, SUN Y. Nucl. Phys. A, 1991, 531: 221-236[10] LIU Y Z, MA Y J, YANG H T, ZHOU S G. Phys. Rev. C, 1995, 52: 2514-2519[11] LIU Y Z, LU J B, MA, Y J, ZHOU S G, ZHENG H. Phys. Rev. C, 1996, 54: 719-730[12] Bark R et al. Phys. Lett. B, 1997, 406: 193-199[13] Jain A K et al. Rev. Mod. Phys., 1998, 70: 843-895[14] XU F R, Satula W, Wyss R. Nucl. Phys. A, 2000, 669: 119-134[15] Starosta K et al. Phys. Rev. Lett., 2001, 86: 971-974[16] Frauendorf S. Rev. Mod. Phys., 2001, 73: 463-514[17] Olbratowski P, Dobaczewski J, Dudek J, Plóciennik W. Phys. Rev. Lett., 2004, 93: 052501[18] MENG J, ZHANG S Q. J. Phys. G: Nucl. Phys., 2010, 37: 064025[19] Walker P, Dracoulis G. Nature, 1999, 399: 35-40[20] Cumming J B, Alburger D E. Phys. Rev. C, 1985, 31: 1494-1498[21] O'neil R, Burke D. Nucl. Phys. A, 1972, 195: 207-240[22] Bruder A et al. Nucl. Phys. A, 1987, 467: 1-28[23] Bruder A, Drissi S, Ionescu V, Kern J, Vorlet J. Nucl. Phys. A, 1987, 474: 518-540[24] Drissi S, Kern J, Hagn E. Nucl. Phys. A, 1990, 512: 413-424[25] Klay N et al. Phys. Rev. C, 1991, 44: 2801-2838[26] McGoram T R et al. Phys. Rev. C, 2000, 62: 031303(R)[27] Dracoulis G D et al. Phys. Rev. Lett., 2006, 97: 122501[28] Kondev F G et al. Phys. Rev. C, 2009, 80: 014304[29] Dracoulis G D et al. Phys. Rev. C, 2010, 81: 011301(R)[30] Bohr A, Mottelson B R, Pines D. Phys. Rev., 1958, 110: 936-938[31] Bohr A, Mottelson B R. Nuclear Structure. Vol. Ⅱ Nuclear Deformation. New York: Benjamin, 1975[32] ZENG J Y, LIU S X, GONG L X, ZHU H B. Phys. Rev. C, 2002, 65: 044307[33] ZHANG Z H, LEI Y A, ZENG J Y. Phys. Rev. C, 2009, 80: 034313[34] Singh S, Malik S S, Jain A K, Singh B. At. Data Nucl. Data Tables, 2006, 92: 1-46[35] ZENG J Y, CHENG T S. Nucl. Phys. A, 1983, 405: 1-28[36] ZENG J Y, JIN T H, ZHAO Z J. Phys. Rev. C, 1994, 50: 1388-1397[37] WU C S, ZENG J Y. Phys. Rev. C, 1989, 39: 666-670[38] MENG J, GUO J Y, LIU L, ZHANG S Q. Frontiers Phys. China, 2006, 1: 38-46[39] Pillet N, Quentin P, Libert J. Nucl. Phys. A, 2002, 697: 141-163[40] HE X T, REN Z Z, LIU S X, ZHAO E G. Nucl. Phys. A, 2009, 817: 45-60[41] ZHANG Z H, ZENG J Y, ZHAO E G, ZHOU S G. Phys. Rev. C, 2011, 83: 011304(R)[42] ZHANG Z H, HE X T, ZENG J Y, ZHAO E G, ZHOU S G. Phys. Rev. C, 2012, 85: 014324[43] XIN X B, LIU S X, LEI Y A, ZENG J Y. Phys. Rev. C, 2000, 62: 067303[44] Nilsson S G et al. Nucl. Phys. A, 1969, 131: 1-66[45] Molique H, Dudek J. Phys. Rev. C, 1997, 56: 1795-1813[46] WU C S, ZENG J Y. Phys. Rev. C, 1990, 41: 1822-1830[47] Bengtsson R, Frauendorf S, May F R. At. Data Nucl. Data Tables, 1986, 35: 15-122[48] LIU S X, ZENG J Y, ZHAO E G. Phys. Rev. C, 2002, 66: 024320[49] Jain A K, Sheline R K, Sood P C, Jain K. Rev. Mod. Phys., 1990, 62: 393-509[50] Firestone R, Baglin C M, Frank CHU S Y. Table of Isotopes: 1999 Update with CD-ROM. New York: Wiley, 1999[51] Basunia M S. Nucl. Data Sheets, 2006, 107: 791-1026
  • 加载中

Get Citation
LI Bing-Huan, ZHANG Zhen-Hua and LEI Yi-An. Particle-number conserving analysis for the 2-quasiparticle and high-K multi-quasiparticle states in doubly-odd 174,176Lu[J]. Chinese Physics C, 2013, 37(1): 014101. doi: 10.1088/1674-1137/37/1/014101
LI Bing-Huan, ZHANG Zhen-Hua and LEI Yi-An. Particle-number conserving analysis for the 2-quasiparticle and high-K multi-quasiparticle states in doubly-odd 174,176Lu[J]. Chinese Physics C, 2013, 37(1): 014101.  doi: 10.1088/1674-1137/37/1/014101 shu
Milestone
Received: 2012-03-07
Revised: 1900-01-01
Article Metric

Article Views(2140)
PDF Downloads(509)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Particle-number conserving analysis for the 2-quasiparticle and high-K multi-quasiparticle states in doubly-odd 174,176Lu

    Corresponding author: ZHANG Zhen-Hua,

Abstract: Two-quasiparticle bands and low-lying excited high-K four-, six-, and eight-quasiparticle bands in the doubly-odd 174, 176Lu are analyzed by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. The proton and neutron Nilsson level schemes for 174, 176Lu are taken from the adjacent odd-A Lu and Hf isotopes, which are adopted to reproduce the experimental bandhead energies of the one-quasiproton and one-quasineutron bands of these odd-A Lu and Hf nuclei, respectively. Once the quasiparticle configurations are determined, the experimental bandhead energies and the moments of inertia of these two- and multi-quasiparticle bands are well reproduced by PNC-CSM calculations. The Coriolis mixing of the low-K (K=|Ω1-Ω2|) two-quasiparticle band of the Gallagher-Moszkowski doublet with one nucleon in the Ω = 1/2 orbital is analyzed.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return