Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate

  • Electric and magnetic screenings of the thermal gluons are studied by using the background expansion method in a gluodynamic model with gauge invariant dimension-2 gluon condensate at zero momentum. At low temperature, the electric and magnetic gluons are degenerate. With the increase of temperature, it is found that the electric and magnetic gluons start to split at certain temperature T0. The electric screening mass changes rapidly with temperature when T > T0, and the Polyakov loop expectation value rises sharply around T0 from zero in the vacuum to a value around 0.8 at high temperature. This suggests that the color electric deconfinement phase transition is driven by electric gluons. It is also observed that the magnetic screening mass keeps almost the same as its vacuum value, which manifests that the magnetic gluons remain confined. Both the screening masses and the Polyakov loop results are qualitatively in agreement with the Lattice calculations.
  • [1] Nambu Y. Phys. Rev., 1960, 117: 648-663[2] Nambu Y. In Symmetries and Quark Models. Ed. Chand R, Gordon and Breach. 1970; Nambu Y. Phys. Rev. D, 1974, 10: 4262; Submitted to the 15th International Conference on High Energy Physics. Kiev, 1970; Nielsen H B, Olesen P. Nucl. Phys. B, 1973, 61: 45; Susskind L. Nuovo Cim. A, 1970, 69: 457[3] 't Hooft. Nucl. Phys. B, 1981, 190: 455; Mandelstam. Phys. Rep. C, 1976, 23: 245[4] 't Hooft G. Nucl. Phys. B, 1978, 138: 1[5] Greensite J. Eur. Phys. J. ST, 2007, 140: 1[6] Polyakov A M. Phys. Lett. B, 1978, 72: 477[7] Fukushima K. Phys. Lett. B, 2004, 591: 277; Ratti C, Thaler M A, Weise W. Phys. Rev. D, 2006, 73: 014019; Sasaki C, Friman B, Redlich K. Phys. Rev. D, 2007, 75: 074013; Schaefer B J, Pawlowski J M, Wambach J. Phys. Rev. D, 2007, 76: 074023; MAO H, JIN J, HUANG M. J. Phys. G, 2010, 37: 035001[8] Shifman M A, Vainshtein A I, Zakharov V I. Nucl. Phys. B, 1979, 147: 385-447; 1979, 147: 448-518[9] Boyd G, Engels J, Karsch F, Laermann E, Legeland C, Lutgemeier M, Petersson B. Nucl. Phys. B, 1996, 469: 419-444. [hep-lat/9602007][10] Schafer T, Shuryak E V. Rev. Mod. Phys., 1998, 70: 323-426 [hep-ph/9610451][11] Lavelle M J, Schaden M. Phys. Lett. B, 1988, 208: 297[12] Lavelle M, Oleszczuk M. Mod. Phys. Lett. A, 1992, 7: 3617-3630[13] Gubarev F V, Stodolsky L, Zakharov V I. Phys. Rev. Lett., 2001, 86: 2220-2222. [hep-ph/0010057][14] Verschelde H, Knecht K, van Acoleyen K, Vanderkelen M. Phys. Lett. B, 2001, 516: 307-313. [hep-th/0105018][15] Chetyrkin K G, Narison S, Zakharov V I. Nucl. Phys. B, 1999, 550: 353-374. [hep-ph/9811275][16] Gubarev F V, Zakharov V I. Phys. Lett. B, 2001, 501: 28-36. [hep-ph/0010096][17] Kondo K I. Phys. Lett. B, 2001, 514: 335. [arXiv:hep-th/0105299][18] Slavnov A A. Theor. Math. Phys., 2005, 143: 489; Teor. Mat. Fiz., 2005, 143: 3. [arXiv:hep-th/0407194][19] Blossier B, Boucaud P, Brinet M, de Soto F, LIU Z, Morenas V, Pene O, Petrov K et al. Phys. Rev. D, 2011, 83: 074506; Blossier B, Boucaud P, Brinet M, de Soto F, DU X, Gravina M, LIU Z, Morenas V et al. arXiv:1111.3023 [hep-lat][20] Boucaud P, Le Yaouanc A, Leroy J P, Micheli J, Pene O, Rodriguez-Quintero J. Phys. Rev. D, 2001, 63: 114003. [arXiv:hep-ph/0101302][21] Dudal D, Verschelde H, Gracey J A, Lemes V E R, Sarandy M S, Sobreiro R F, Sorella S P. JHEP, 2004, 0401: 044. [hep-th/0311194][22] Dudal D, Verschelde H, Browne R E, Gracey J A. Phys. Lett. B, 2003, 562: 87-96. [hep-th/0302128][23] Megias E, Ruiz Arriola E, Salcedo L L. JHEP, 2006, 0601: 073. [arXiv:hep-ph/0505215][24] Andreev O, Zakharov V I. Phys. Rev. D, 2006, 74: 025023. [arXiv:hep-ph/0604204][25] HE S, HUANG M, YAN Q S. Phys. Rev. D, 2011, 83: 045034; LI D, HE S, HUANG M, YAN Q S. JHEP, 2011, 1109: 041. [arXiv:1103.5389 [hep-th]][26] Chernodub M N, Ilgenfritz E M. Phys. Rev. D, 2008, 78: 034036. [arXiv:0805.3714 [hep-lat]][27] Vercauteren D, Verschelde H. Phys. Rev. D, 2010, 82: 085026. [arXiv:1007.2789 [hep-th]][28] GAO M. Phys. Rev. D, 1990, 41: 626[29] Heller U M, Karsch F, Rank J. Phys. Rev. D, 1998, 57: 1438-1448. [hep-lat/9710033][30] Kaczmarek O, Karsch F, Laermann E, Lutgemeier M. Phys. Rev. D, 2000, 62: 034021. [hep-lat/9908010][31] Kraemmer U, Rebhan A. Rept. Prog. Phys., 2004, 67: 351. [hep-ph/0310337][32] Chakraborty P, Mustafa M G, Thoma M H. arXiv:1109.1971 [hep-ph][33] Bowman P O, Heller U M, Leinweber D B, Parappilly M B, Williams A G. Phys. Rev. D, 2004, 70: 034509. [hep-lat/0402032][34] Kaczmarek O, Karsch F, Zantow F, Petreczky P. Phys. Rev. D, 2004, 70: 074505. [hep-lat/0406036]; Kaczmarek O, Zantow F. Phys. Rev. D, 2005, 71: 114510. [hep-lat/0503017][35] Peshier A. [hep-ph/0601119][36] Nakamura A, Saito T, Sakai S. Phys. Rev. D, 2004, 69: 014506. [hep-lat/0311024][37] Maezawa Y et al. (WHOT-QCD collaboration). Phys. Rev. D, 2010, 81: 091501. [arXiv:1003.1361 [hep-lat]][38] Fischer C S, Alkofer R. Phys. Rev. D, 2003, 67: 094020. [arXiv:hep-ph/0301094][39] Fischer C S, Maas A, Muller J A. Eur. Phys. J. C, 2010, 68: 165. [arXiv:1003.1960 [hep-ph]]; Cucchieri A, Maas A, Mendes T. Phys. Rev. D, 2007, 75: 076003. [arXiv:hep-lat/0702022][40] Celenza L S, Shakin C M. Phys. Rev. D, 1986, 34: 1591[41] LI X D, Shakin C M. Phys. Rev. D, 2005, 71: 074007. [arXiv:hep-ph/0410404][42] Savvidy G K. Phys. Lett. B, 1977, 71: 133[43] Nielsen N K, Olesen P. Nucl. Phys. B, 1978, 144: 376[44] Kondo K I. Phys. Lett. B, 2004, 600: 287. [arXiv:hep-th/0404252][45] Vercauteren D, Verschelde H. Phys. Lett. B, 2008, 660: 432. [arXiv:0712.0570 [hep-th]][46] Kapusta J I. Finite Temperature Field Theory. Cambridge: Cambridge University Press, 1989[47] Le Bellac M. Thermal Field Theory. Cambridge: Cambridge University Press, 1996[48] Roberts C D, Schmidt S M. Prog. Part. Nucl. Phys., 2000, 45: S1-S103. [nucl-th/0005064]; Alkofer R, von Smekal L. Phys. Rept., 2001, 353: 281. [arXiv:hep-ph/0007355]; Maris P, Roberts C D. Int. J. Mod. Phys. E, 2003, 12: 297. [arXiv:nucl-th/0301049][49] Geshkenbein B V. Sov. J. Nucl. Phys., 1990, 51: 719-725; Yndurain F J. Phys. Rept., 1999, 320: 287. [arXiv:hep-ph/9903457]; Ioffe B L, Zyablyuk K N. Eur. Phys. J. C, 2003, 27: 229-241. [hep-ph/0207183]; Zyablyuk K. JHEP, 2003, 0301: 081. [arXiv:hep-ph/0210103]; Samsonov A. [arXiv:hep-ph/0407199][50] Boyd G, Miller D E. arXiv:hep-ph/9608482[51] Giacomo A Di, Rossi G C. Phys. Lett. B, 1981, 100: 481; Giacomo A Di, Paffuti G. Phys. Lett. B, 1982, 108: 327[52] Ioffe B L. Phys. Atom. Nucl., 2003, 66: 30-43. [hep-ph/0207191][53] Hietanen A, Kajantie K, Laine M, Rummukainen K, Schroder Y. JHEP, 2005, 0501: 013. [arXiv:hep-lat/0412008][54] Schmidt S M, Blaschke D, Kalinovsky Y L. Phys. Rev. C, 1994, 50: 435-446; Gocke C, Blaschke D, Khalatyan A, Grigorian H. [hep-ph/0104183]; Grigorian H. Phys. Part. Nucl. Lett., 2007, 4: 223-231. [hep-ph/0602238]; Gomez Dumm D, Scoccola N N. Phys. Rev. D, 2002, 65: 074021. [arXiv:hep-ph/0107251][55] Gava E, Jengo R. Phys. Lett. B, 1981, 105: 285[56] Kaczmarek O, Karsch F, Petreczky P, Zantow F. Phys. Lett. B, 2002, 543: 41-47. [hep-lat/0207002]
  • [1] Nambu Y. Phys. Rev., 1960, 117: 648-663[2] Nambu Y. In Symmetries and Quark Models. Ed. Chand R, Gordon and Breach. 1970; Nambu Y. Phys. Rev. D, 1974, 10: 4262; Submitted to the 15th International Conference on High Energy Physics. Kiev, 1970; Nielsen H B, Olesen P. Nucl. Phys. B, 1973, 61: 45; Susskind L. Nuovo Cim. A, 1970, 69: 457[3] 't Hooft. Nucl. Phys. B, 1981, 190: 455; Mandelstam. Phys. Rep. C, 1976, 23: 245[4] 't Hooft G. Nucl. Phys. B, 1978, 138: 1[5] Greensite J. Eur. Phys. J. ST, 2007, 140: 1[6] Polyakov A M. Phys. Lett. B, 1978, 72: 477[7] Fukushima K. Phys. Lett. B, 2004, 591: 277; Ratti C, Thaler M A, Weise W. Phys. Rev. D, 2006, 73: 014019; Sasaki C, Friman B, Redlich K. Phys. Rev. D, 2007, 75: 074013; Schaefer B J, Pawlowski J M, Wambach J. Phys. Rev. D, 2007, 76: 074023; MAO H, JIN J, HUANG M. J. Phys. G, 2010, 37: 035001[8] Shifman M A, Vainshtein A I, Zakharov V I. Nucl. Phys. B, 1979, 147: 385-447; 1979, 147: 448-518[9] Boyd G, Engels J, Karsch F, Laermann E, Legeland C, Lutgemeier M, Petersson B. Nucl. Phys. B, 1996, 469: 419-444. [hep-lat/9602007][10] Schafer T, Shuryak E V. Rev. Mod. Phys., 1998, 70: 323-426 [hep-ph/9610451][11] Lavelle M J, Schaden M. Phys. Lett. B, 1988, 208: 297[12] Lavelle M, Oleszczuk M. Mod. Phys. Lett. A, 1992, 7: 3617-3630[13] Gubarev F V, Stodolsky L, Zakharov V I. Phys. Rev. Lett., 2001, 86: 2220-2222. [hep-ph/0010057][14] Verschelde H, Knecht K, van Acoleyen K, Vanderkelen M. Phys. Lett. B, 2001, 516: 307-313. [hep-th/0105018][15] Chetyrkin K G, Narison S, Zakharov V I. Nucl. Phys. B, 1999, 550: 353-374. [hep-ph/9811275][16] Gubarev F V, Zakharov V I. Phys. Lett. B, 2001, 501: 28-36. [hep-ph/0010096][17] Kondo K I. Phys. Lett. B, 2001, 514: 335. [arXiv:hep-th/0105299][18] Slavnov A A. Theor. Math. Phys., 2005, 143: 489; Teor. Mat. Fiz., 2005, 143: 3. [arXiv:hep-th/0407194][19] Blossier B, Boucaud P, Brinet M, de Soto F, LIU Z, Morenas V, Pene O, Petrov K et al. Phys. Rev. D, 2011, 83: 074506; Blossier B, Boucaud P, Brinet M, de Soto F, DU X, Gravina M, LIU Z, Morenas V et al. arXiv:1111.3023 [hep-lat][20] Boucaud P, Le Yaouanc A, Leroy J P, Micheli J, Pene O, Rodriguez-Quintero J. Phys. Rev. D, 2001, 63: 114003. [arXiv:hep-ph/0101302][21] Dudal D, Verschelde H, Gracey J A, Lemes V E R, Sarandy M S, Sobreiro R F, Sorella S P. JHEP, 2004, 0401: 044. [hep-th/0311194][22] Dudal D, Verschelde H, Browne R E, Gracey J A. Phys. Lett. B, 2003, 562: 87-96. [hep-th/0302128][23] Megias E, Ruiz Arriola E, Salcedo L L. JHEP, 2006, 0601: 073. [arXiv:hep-ph/0505215][24] Andreev O, Zakharov V I. Phys. Rev. D, 2006, 74: 025023. [arXiv:hep-ph/0604204][25] HE S, HUANG M, YAN Q S. Phys. Rev. D, 2011, 83: 045034; LI D, HE S, HUANG M, YAN Q S. JHEP, 2011, 1109: 041. [arXiv:1103.5389 [hep-th]][26] Chernodub M N, Ilgenfritz E M. Phys. Rev. D, 2008, 78: 034036. [arXiv:0805.3714 [hep-lat]][27] Vercauteren D, Verschelde H. Phys. Rev. D, 2010, 82: 085026. [arXiv:1007.2789 [hep-th]][28] GAO M. Phys. Rev. D, 1990, 41: 626[29] Heller U M, Karsch F, Rank J. Phys. Rev. D, 1998, 57: 1438-1448. [hep-lat/9710033][30] Kaczmarek O, Karsch F, Laermann E, Lutgemeier M. Phys. Rev. D, 2000, 62: 034021. [hep-lat/9908010][31] Kraemmer U, Rebhan A. Rept. Prog. Phys., 2004, 67: 351. [hep-ph/0310337][32] Chakraborty P, Mustafa M G, Thoma M H. arXiv:1109.1971 [hep-ph][33] Bowman P O, Heller U M, Leinweber D B, Parappilly M B, Williams A G. Phys. Rev. D, 2004, 70: 034509. [hep-lat/0402032][34] Kaczmarek O, Karsch F, Zantow F, Petreczky P. Phys. Rev. D, 2004, 70: 074505. [hep-lat/0406036]; Kaczmarek O, Zantow F. Phys. Rev. D, 2005, 71: 114510. [hep-lat/0503017][35] Peshier A. [hep-ph/0601119][36] Nakamura A, Saito T, Sakai S. Phys. Rev. D, 2004, 69: 014506. [hep-lat/0311024][37] Maezawa Y et al. (WHOT-QCD collaboration). Phys. Rev. D, 2010, 81: 091501. [arXiv:1003.1361 [hep-lat]][38] Fischer C S, Alkofer R. Phys. Rev. D, 2003, 67: 094020. [arXiv:hep-ph/0301094][39] Fischer C S, Maas A, Muller J A. Eur. Phys. J. C, 2010, 68: 165. [arXiv:1003.1960 [hep-ph]]; Cucchieri A, Maas A, Mendes T. Phys. Rev. D, 2007, 75: 076003. [arXiv:hep-lat/0702022][40] Celenza L S, Shakin C M. Phys. Rev. D, 1986, 34: 1591[41] LI X D, Shakin C M. Phys. Rev. D, 2005, 71: 074007. [arXiv:hep-ph/0410404][42] Savvidy G K. Phys. Lett. B, 1977, 71: 133[43] Nielsen N K, Olesen P. Nucl. Phys. B, 1978, 144: 376[44] Kondo K I. Phys. Lett. B, 2004, 600: 287. [arXiv:hep-th/0404252][45] Vercauteren D, Verschelde H. Phys. Lett. B, 2008, 660: 432. [arXiv:0712.0570 [hep-th]][46] Kapusta J I. Finite Temperature Field Theory. Cambridge: Cambridge University Press, 1989[47] Le Bellac M. Thermal Field Theory. Cambridge: Cambridge University Press, 1996[48] Roberts C D, Schmidt S M. Prog. Part. Nucl. Phys., 2000, 45: S1-S103. [nucl-th/0005064]; Alkofer R, von Smekal L. Phys. Rept., 2001, 353: 281. [arXiv:hep-ph/0007355]; Maris P, Roberts C D. Int. J. Mod. Phys. E, 2003, 12: 297. [arXiv:nucl-th/0301049][49] Geshkenbein B V. Sov. J. Nucl. Phys., 1990, 51: 719-725; Yndurain F J. Phys. Rept., 1999, 320: 287. [arXiv:hep-ph/9903457]; Ioffe B L, Zyablyuk K N. Eur. Phys. J. C, 2003, 27: 229-241. [hep-ph/0207183]; Zyablyuk K. JHEP, 2003, 0301: 081. [arXiv:hep-ph/0210103]; Samsonov A. [arXiv:hep-ph/0407199][50] Boyd G, Miller D E. arXiv:hep-ph/9608482[51] Giacomo A Di, Rossi G C. Phys. Lett. B, 1981, 100: 481; Giacomo A Di, Paffuti G. Phys. Lett. B, 1982, 108: 327[52] Ioffe B L. Phys. Atom. Nucl., 2003, 66: 30-43. [hep-ph/0207191][53] Hietanen A, Kajantie K, Laine M, Rummukainen K, Schroder Y. JHEP, 2005, 0501: 013. [arXiv:hep-lat/0412008][54] Schmidt S M, Blaschke D, Kalinovsky Y L. Phys. Rev. C, 1994, 50: 435-446; Gocke C, Blaschke D, Khalatyan A, Grigorian H. [hep-ph/0104183]; Grigorian H. Phys. Part. Nucl. Lett., 2007, 4: 223-231. [hep-ph/0602238]; Gomez Dumm D, Scoccola N N. Phys. Rev. D, 2002, 65: 074021. [arXiv:hep-ph/0107251][55] Gava E, Jengo R. Phys. Lett. B, 1981, 105: 285[56] Kaczmarek O, Karsch F, Petreczky P, Zantow F. Phys. Lett. B, 2002, 543: 41-47. [hep-lat/0207002]
  • 加载中

Cited by

1. Chen, H., Wu, D., Zhang, M.-Y. et al. Thermodynamic topology of phantom AdS black holes in massive gravity[J]. Physics of the Dark Universe, 2024. doi: 10.1016/j.dark.2024.101617
2. Abdusattar, H., Kong, S.-B. Cooling-heating properties of the FRW universe in gravity with a generalized conformal scalar field[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116719
3. Malik, A., Chaudhary, S., Metwally, A.S.M. Joule–Thomson expansion and images of black hole in SU(N)-non-linear sigma model[J]. European Physical Journal C, 2024, 84(6): 610. doi: 10.1140/epjc/s10052-024-12857-9
4. Yasir, M., Xia, T., Ditta, A. et al. Joule-Thomson expansion of Bardeen black hole with a cloud of strings[J]. International Journal of Modern Physics A, 2024, 39(11-12): 2450046. doi: 10.1142/S0217751X24500465
5. Guo, Y., Xie, H., Miao, Y.-G. Joule-Thomson effect of AdS black holes in conformal gravity[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116280
6. Zhang, M.-Y., Hassanabadi, H., Chen, H. et al. Critical behavior and Joule-Thomson expansion of charged anti-de Sitter black hole in four-dimensional Rastall gravity[J]. International Journal of Modern Physics A, 2023, 38(18-19): 2350087. doi: 10.1142/S0217751X23500872
7. Yang, S., Tao, J., Mu, B. et al. Lyapunov exponents and phase transitions of Born-Infeld AdS black holes[J]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(7): 045. doi: 10.1088/1475-7516/2023/07/045
8. Wen, S., Hong, W., Tao, J. Observational appearances of magnetically charged black holes in Born–Infeld electrodynamics[J]. European Physical Journal C, 2023, 83(4): 277. doi: 10.1140/epjc/s10052-023-11431-z
9. Masmar, K.. Joule-Thomson expansion for a nonlinearly charged Anti-de Sitter black hole[J]. International Journal of Geometric Methods in Modern Physics, 2023, 20(5): 2350080. doi: 10.1142/S0219887823500809
10. Li, N., Li, J.-Y., Su, B.-Y. The Joule–Thomson and Joule–Thomson-Like Effects of the Black Holes in a Cavity[J]. Fortschritte der Physik, 2023, 71(2-3): 2200166. doi: 10.1002/prop.202200166
11. Graça, J.P.M., Capossoli, E.F., Boschi-Filho, H. et al. Joule-Thomson expansion for quantum corrected AdS-Reissner-Nördstrom black holes in a Kiselev spacetime[J]. Physical Review D, 2023, 107(2): 024045. doi: 10.1103/PhysRevD.107.024045
12. Abdusattar, H., Kong, S.-B., You, W.-L. et al. First principle study of gravitational pressure and thermodynamic8s of FRW universe[J]. Journal of High Energy Physics, 2022, 2022(12): 168. doi: 10.1007/JHEP12(2022)168
13. Cao, Y., Feng, H., Tao, J. et al. Black holes in a cavity: Heat engine and Joule-Thomson expansion[J]. General Relativity and Gravitation, 2022, 54(9): 105. doi: 10.1007/s10714-022-02990-9
14. Barrientos, J., Mena, J. Joule-Thomson expansion of AdS black holes in quasitopological electromagnetism[J]. Physical Review D, 2022, 106(4): 044064. doi: 10.1103/PhysRevD.106.044064
15. He, A., Tao, J., Wang, P. et al. Effects of Born–Infeld electrodynamics on black hole shadows[J]. European Physical Journal C, 2022, 82(8): 683. doi: 10.1140/epjc/s10052-022-10637-x
16. Zhang, C.-M., Zhang, M., Zou, D.-C. Joule-Thomson expansion of Born-Infeld AdS black holes in consistent 4D Einstein-Gauss-Bonnet gravity[J]. Modern Physics Letters A, 2022, 37(11): 2250063. doi: 10.1142/S0217732322500638
17. Silva, G.V., Bezerra, V.B., Graça, J.P.M. et al. Joule Thomson expansion in charged AdS black hole surrounded by a cosmological fluid in Rainbow Gravity[J]. Modern Physics Letters A, 2021, 36(40): 2150278. doi: 10.1142/S0217732321502783
18. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
19. Biswas, A.. Joule-Thomson expansion of AdS black holes in Einstein Power-Yang-mills gravity[J]. Physica Scripta, 2021, 96(12): 125310. doi: 10.1088/1402-4896/ac2b42
20. Zarepour, S.. Holographic Joule-Thomson expansion in lower dimensions[J]. Physica Scripta, 2021, 96(12): 125011. doi: 10.1088/1402-4896/ac2b49
21. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
22. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
23. Xing, J.-T., Meng, Y., Kuang, X.-M. Joule-Thomson expansion for hairy black holes[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021. doi: 10.1016/j.physletb.2021.136604
24. Cao, Y., Feng, H., Hong, W. et al. Joule-Thomson expansion of RN-AdS black hole immersed in perfect fluid dark matter[J]. Communications in Theoretical Physics, 2021, 73(9): 095403. doi: 10.1088/1572-9494/ac1066
25. Graça, J.P.M., Capossoli, E.F., Boschi-Filho, H. Joule-Thomson expansion for noncommutative uncharged black holes[J]. EPL, 2021, 135(4): 41002. doi: 10.1209/0295-5075/ac24c1
26. Tataryn, M.B., Stetsko, M.M. Thermodynamics of a static electric-magnetic black hole in Einstein-Born-Infeld-AdS theory with different horizon geometries[J]. General Relativity and Gravitation, 2021, 53(8): 72. doi: 10.1007/s10714-021-02842-y
27. Mirza, B., Naeimipour, F., Tavakoli, M. Joule-Thomson Expansion of the Quasitopological Black Holes[J]. Frontiers in Physics, 2021. doi: 10.3389/fphy.2021.628727
28. Feng, Z.-W., Zhou, X., He, G. et al. Joule-Thomson expansion of higher dimensional nonlinearly AdS black hole with power Maxwell invariant source[J]. Communications in Theoretical Physics, 2021, 73(6): 065401. doi: 10.1088/1572-9494/abecd9
Get Citation
XU Fu-Kun and HUANG Mei. Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate[J]. Chinese Physics C, 2013, 37(1): 014103. doi: 10.1088/1674-1137/37/1/014103
XU Fu-Kun and HUANG Mei. Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate[J]. Chinese Physics C, 2013, 37(1): 014103.  doi: 10.1088/1674-1137/37/1/014103 shu
Milestone
Received: 2012-04-28
Revised: 1900-01-01
Article Metric

Article Views(2276)
PDF Downloads(424)
Cited by(30)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate

Abstract: Electric and magnetic screenings of the thermal gluons are studied by using the background expansion method in a gluodynamic model with gauge invariant dimension-2 gluon condensate at zero momentum. At low temperature, the electric and magnetic gluons are degenerate. With the increase of temperature, it is found that the electric and magnetic gluons start to split at certain temperature T0. The electric screening mass changes rapidly with temperature when T > T0, and the Polyakov loop expectation value rises sharply around T0 from zero in the vacuum to a value around 0.8 at high temperature. This suggests that the color electric deconfinement phase transition is driven by electric gluons. It is also observed that the magnetic screening mass keeps almost the same as its vacuum value, which manifests that the magnetic gluons remain confined. Both the screening masses and the Polyakov loop results are qualitatively in agreement with the Lattice calculations.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return