Realization of a locally-round beam in an ultimate storage ring using solenoids

  • 'Ultimate" storage rings (USRs), with electron emittance smaller than 100 pm·rad and on the scale of the diffraction limit for hard X-rays in both transverse planes, have the potential to deliver photons with much higher brightness and higher transverse coherence than that projected for the rings currently operational or under construction. Worldwide efforts have been made to design and to build light sources based on USRs. How to obtain a round beam, i.e., a beam with equivalent transverse emittances, is an important topic in USR studies. In this paper, we show that a locally-round beam can be achieved by using a pair of solenoid and anti-solenoid with a circularly polarized undulator located in between. Theoretical analysis and application of this novel method, particularly to one of the Beijing Advanced Photon Source storage ring design having natural emittance of 75 pm·rad, are presented.
  • [1] BEI M et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 2010, 622: 518[2] Elleaume P, Ropert A. Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 500: 18[3] Tsumaki K, Kumagai N K. Nucl. Instrum. Methods Phys. Res., Sect. A, 2006, 565: 394[4] Borland M. Proc. of the SRI09. Melbourne: AIP, 2009. 911[5] JING Y, Lee S Y, Sokol P E. Proc. of the 2011 Particle Accelerator Conference. New York: IEEE, 2011. 781[6] CAI Y et al. Phys. Rev. ST Accel. Beams, 2012, 15: 054002[7] XU Gang, JIAO Yi. Towards the Ultimate Storage Ring: the Lattice Design for Beijing Advanced Photon Source. Chin. Phys. C (HEP NP), 2013, 37(5): 057003[8] YONG E M. Collisions of Round Beams at the Cornell Electron Storage Ring in Preparation for Mbius operation (Ph.D. Thesis). Ithaca, Cornell University, 1998[9] CHAO A W, Raimondi P. SLAC-PUB-14808[10] Borland M. APS Preprint, Advanced Photon Source LS-287, 2000[11] Courant E D, Snyder H S. Ann. Phys. (Paris), 1958, 3: 1[12] CHAO A W, Tigner M. Handbook of Accelerator Physics and Engineering. Third Edition. Singapore: World Scientific, 2006. 74[13] Deb K et al. IEEE Transactions on Evolutionary Computation, 2002, 6(efeq2): 182-197[14] Takaki H et al. Phys. Rev. ST Accel. Beams, 201, 13: 020705[15] ZHU Zi-An. Private communication
  • [1] BEI M et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 2010, 622: 518[2] Elleaume P, Ropert A. Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 500: 18[3] Tsumaki K, Kumagai N K. Nucl. Instrum. Methods Phys. Res., Sect. A, 2006, 565: 394[4] Borland M. Proc. of the SRI09. Melbourne: AIP, 2009. 911[5] JING Y, Lee S Y, Sokol P E. Proc. of the 2011 Particle Accelerator Conference. New York: IEEE, 2011. 781[6] CAI Y et al. Phys. Rev. ST Accel. Beams, 2012, 15: 054002[7] XU Gang, JIAO Yi. Towards the Ultimate Storage Ring: the Lattice Design for Beijing Advanced Photon Source. Chin. Phys. C (HEP NP), 2013, 37(5): 057003[8] YONG E M. Collisions of Round Beams at the Cornell Electron Storage Ring in Preparation for Mbius operation (Ph.D. Thesis). Ithaca, Cornell University, 1998[9] CHAO A W, Raimondi P. SLAC-PUB-14808[10] Borland M. APS Preprint, Advanced Photon Source LS-287, 2000[11] Courant E D, Snyder H S. Ann. Phys. (Paris), 1958, 3: 1[12] CHAO A W, Tigner M. Handbook of Accelerator Physics and Engineering. Third Edition. Singapore: World Scientific, 2006. 74[13] Deb K et al. IEEE Transactions on Evolutionary Computation, 2002, 6(efeq2): 182-197[14] Takaki H et al. Phys. Rev. ST Accel. Beams, 201, 13: 020705[15] ZHU Zi-An. Private communication
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
XU Gang, JIAO Yi and TIAN Sai-Ke. Realization of a locally-round beam in an ultimate storage ring using solenoids[J]. Chinese Physics C, 2013, 37(6): 067002. doi: 10.1088/1674-1137/37/6/067002
XU Gang, JIAO Yi and TIAN Sai-Ke. Realization of a locally-round beam in an ultimate storage ring using solenoids[J]. Chinese Physics C, 2013, 37(6): 067002.  doi: 10.1088/1674-1137/37/6/067002 shu
Milestone
Received: 2012-09-10
Revised: 1900-01-01
Article Metric

Article Views(2504)
PDF Downloads(379)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Realization of a locally-round beam in an ultimate storage ring using solenoids

Abstract: 'Ultimate" storage rings (USRs), with electron emittance smaller than 100 pm·rad and on the scale of the diffraction limit for hard X-rays in both transverse planes, have the potential to deliver photons with much higher brightness and higher transverse coherence than that projected for the rings currently operational or under construction. Worldwide efforts have been made to design and to build light sources based on USRs. How to obtain a round beam, i.e., a beam with equivalent transverse emittances, is an important topic in USR studies. In this paper, we show that a locally-round beam can be achieved by using a pair of solenoid and anti-solenoid with a circularly polarized undulator located in between. Theoretical analysis and application of this novel method, particularly to one of the Beijing Advanced Photon Source storage ring design having natural emittance of 75 pm·rad, are presented.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return