Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment

  • The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (<10-2events·kg-1·day-1·keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.
  • [1] KANG Ke-Jun, CHENG Jian-Ping, LI Jin et al. (CDEX collaboration). Front Phys., 2013, 8(4): 412[2] KANG Ke-Jun, YUE Qian, WU Yu-Cheng et al. (CDEX collaboration). Chinese Physics C, 2013, 37(12): 126002[3] ZHAO Wei, YUE Qian, KANG Ke-Jun et al. (CDEX collaboration). Phys. Rev. D, 2013, 88(5): 052004[4] LI Lei, YUE Qian, TANG Chang-Jian et al. Chinese Physics C, 2011, 35(3): 282[5] WU Yu-Cheng, HAO Xi-Qing, YUE Qian et al. Chinese Physics C, 2013, 37(8): 45[6] Agostinelli S, Allison J, Amako K et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250[7] ET ENTERPRISES LTD. 200 mm (8") photomultiplier 9357KB series data sheet[8] Grosjean D E, Vidal R A, Baragiola R A et al. Physical Review B, 1997, 56(11): 6975[9] Ishida N, CHEN M, Doke T et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 384(2): 380[10] Amsler C, Badertscher A, Boccone V et al. (ArDM collaboration). Journal of Instrumentation, 2010, 5(11): P11003[11] Lally C H, Davies G J, Jones W G et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 117(4): 421[12] Antonello M, Arneodo F, Badertscher A et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 516(2-3): 348[13] Seidel G M, Lanou R E, YAO W. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 489(1-3): 189[14] Gehman V M, Seibert S R, Rielage K et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 654(1): 116[15] Boccone V, Lightfoot P K, Mavrokoridis K et al. (ArDM collaboration). Journal of Instrumentation, 2009, 4(06): P06001[16] Benetti P, Acciarri R, Adamo F et al. Astroparticle Physics, 2008, 28(6): 495[17] Amerio S, Amoruso S, Antonello M et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 527(3): 329[18] Archambaultt J P, Gumplinger P, Kitching P et al. GEANT4 photon readout simulations of plastic scintillating strips with embedded WLS fibers. Proceedings of the Nuclear Science Symposium Conference Record. IEEE, 2003. 1549[19] Tavazzi S, Mora S, Alessandrini L et al. The Journal of Chemical Physics, 2011, 134: 034707
  • [1] KANG Ke-Jun, CHENG Jian-Ping, LI Jin et al. (CDEX collaboration). Front Phys., 2013, 8(4): 412[2] KANG Ke-Jun, YUE Qian, WU Yu-Cheng et al. (CDEX collaboration). Chinese Physics C, 2013, 37(12): 126002[3] ZHAO Wei, YUE Qian, KANG Ke-Jun et al. (CDEX collaboration). Phys. Rev. D, 2013, 88(5): 052004[4] LI Lei, YUE Qian, TANG Chang-Jian et al. Chinese Physics C, 2011, 35(3): 282[5] WU Yu-Cheng, HAO Xi-Qing, YUE Qian et al. Chinese Physics C, 2013, 37(8): 45[6] Agostinelli S, Allison J, Amako K et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250[7] ET ENTERPRISES LTD. 200 mm (8") photomultiplier 9357KB series data sheet[8] Grosjean D E, Vidal R A, Baragiola R A et al. Physical Review B, 1997, 56(11): 6975[9] Ishida N, CHEN M, Doke T et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 384(2): 380[10] Amsler C, Badertscher A, Boccone V et al. (ArDM collaboration). Journal of Instrumentation, 2010, 5(11): P11003[11] Lally C H, Davies G J, Jones W G et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 117(4): 421[12] Antonello M, Arneodo F, Badertscher A et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 516(2-3): 348[13] Seidel G M, Lanou R E, YAO W. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 489(1-3): 189[14] Gehman V M, Seibert S R, Rielage K et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 654(1): 116[15] Boccone V, Lightfoot P K, Mavrokoridis K et al. (ArDM collaboration). Journal of Instrumentation, 2009, 4(06): P06001[16] Benetti P, Acciarri R, Adamo F et al. Astroparticle Physics, 2008, 28(6): 495[17] Amerio S, Amoruso S, Antonello M et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 527(3): 329[18] Archambaultt J P, Gumplinger P, Kitching P et al. GEANT4 photon readout simulations of plastic scintillating strips with embedded WLS fibers. Proceedings of the Nuclear Science Symposium Conference Record. IEEE, 2003. 1549[19] Tavazzi S, Mora S, Alessandrini L et al. The Journal of Chemical Physics, 2011, 134: 034707
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
SU Jian, ZENG Zhi, MA Hao, YUE Qian, CHENG Jian-Ping, CHANG Jian-Ping, CHEN Nan, CHEN Ning, CHEN Qing-Hao, CHEN Yun-Hua, CHUANG Yo-Chun, DENG Zhi, DU Qiang, GONG Hui, HAO Xi-Qing, HE Qing-Ju, HUANG Han-Xiong, HUANG Teng-Rui, JIANG Hao, KANG Ke-Jun, LI Hau-Bin and et al. Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment[J]. Chinese Physics C, 2015, 39(3): 036001. doi: 10.1088/1674-1137/39/3/036001
SU Jian, ZENG Zhi, MA Hao, YUE Qian, CHENG Jian-Ping, CHANG Jian-Ping, CHEN Nan, CHEN Ning, CHEN Qing-Hao, CHEN Yun-Hua, CHUANG Yo-Chun, DENG Zhi, DU Qiang, GONG Hui, HAO Xi-Qing, HE Qing-Ju, HUANG Han-Xiong, HUANG Teng-Rui, JIANG Hao, KANG Ke-Jun, LI Hau-Bin and et al. Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment[J]. Chinese Physics C, 2015, 39(3): 036001.  doi: 10.1088/1674-1137/39/3/036001 shu
Milestone
Received: 2014-02-20
Revised: 2014-09-12
Article Metric

Article Views(2162)
PDF Downloads(224)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment

    Corresponding author: YUE Qian,

Abstract: The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (<10-2events·kg-1·day-1·keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return