Trapezoidal pulse shaping for pile-up pulse identification in X-ray spectrometry

  • Energy resolution is affected by the intrinsic energy resolution of the detector, ballistic deficit, pile-up pulses and noise. Pile-up pulses become the dominant factor that degrades energy resolution after the system is established, so pile-up rejection is often applied to obtain good energy resolution by discarding pulses that are expected to be contaminated by pile-up. However, pile-up rejection can reduce count rates and thus lower the measurement precision. In order to improve count rates and maintain energy resolution, a new method of pile-up pulse identification based on trapezoidal pulse shaping is presented. Combined with pulse width discrimination, this method is implemented by recording pulses that are not seriously piled up. Some experimental tests with a Cu-Pb alloy sample are carried out to verify the performance of this method in X-ray spectrometry. The results show that the method can significantly improve count rates without degrading energy resolution.
      PCAS:
    • 29.30.Kv(X- and γ-ray spectroscopy)
    • 29.30.Lw(Nuclear orientation devices)
  • [1] ZHANG Ruan-Yu. On the Study of Digital Nuclear Spectrum System (Ph. D. Thesis). Sichuan: Sichuan University, 2006 (in Chinese)[2] WANG Jing-Jin. Nuclear Electronics. Beijing: Atomic Energy Press, 1983. 242 (in Chinese)[3] Bradley A Roscoe, A Keith Furr. Nucl. Instrum. Methods, 1977, 140: 401[4] Richard M Lindstrom, Ronald F Fleming. Radioact Radiochem, 1995, 6(2): 20[5] Danon Y, Sones B, Block R. Nucl. Instrum. Methods Phys. Res., Sect. A, 2004, 524: 287[6] DI Yu-Ming, FANG Guo-Ming, QIU Xiao-Lin et al. Atomic Energy Science and Technology, 2008, 42(4): 370 (in Chinese)[7] Nakhostin M, Podolyak Z, Regan P H et al. Rev. Sci. Instrum., 2010, 81(10): 103507[8] Taguchi K, Frey E C, WANG Xiao-Lan. Med. Phys., 2010, 37(8): 3957[9] Scoullar P A B, Mclean C C, Evans R J. Real Time Pulse Pile-up Recovery in A High Throughput Digital Pulse Processor. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Valencia: World Scientific, 2011[10] CHEN Shi-Guo. Design and Realization of The Gaussian Shaping Filtering in Digital Nuclear Instrument System (Ph. D. Thesis). Sichuan: Sichuan University, 2005 (in Chinese)[11] ZHOU Jian-Bin, ZHOU Wei, HONG Xu. Nucl. Sci. Tech., 2013, 24(6): 060401[12] Valentin T. Jordanov, Glenn F. Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, 345: 337[13] Valentin T. Jordanov, Glenn F. Knoll, Alan C. Huber et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, 353: 261[14] ZHOU Jian-Bin, WANG Min, ZHOU Wei et al. Atomic Energy Science and Technology, 2014, 48(2): 352 (in Chinese)
  • [1] ZHANG Ruan-Yu. On the Study of Digital Nuclear Spectrum System (Ph. D. Thesis). Sichuan: Sichuan University, 2006 (in Chinese)[2] WANG Jing-Jin. Nuclear Electronics. Beijing: Atomic Energy Press, 1983. 242 (in Chinese)[3] Bradley A Roscoe, A Keith Furr. Nucl. Instrum. Methods, 1977, 140: 401[4] Richard M Lindstrom, Ronald F Fleming. Radioact Radiochem, 1995, 6(2): 20[5] Danon Y, Sones B, Block R. Nucl. Instrum. Methods Phys. Res., Sect. A, 2004, 524: 287[6] DI Yu-Ming, FANG Guo-Ming, QIU Xiao-Lin et al. Atomic Energy Science and Technology, 2008, 42(4): 370 (in Chinese)[7] Nakhostin M, Podolyak Z, Regan P H et al. Rev. Sci. Instrum., 2010, 81(10): 103507[8] Taguchi K, Frey E C, WANG Xiao-Lan. Med. Phys., 2010, 37(8): 3957[9] Scoullar P A B, Mclean C C, Evans R J. Real Time Pulse Pile-up Recovery in A High Throughput Digital Pulse Processor. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Valencia: World Scientific, 2011[10] CHEN Shi-Guo. Design and Realization of The Gaussian Shaping Filtering in Digital Nuclear Instrument System (Ph. D. Thesis). Sichuan: Sichuan University, 2005 (in Chinese)[11] ZHOU Jian-Bin, ZHOU Wei, HONG Xu. Nucl. Sci. Tech., 2013, 24(6): 060401[12] Valentin T. Jordanov, Glenn F. Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, 345: 337[13] Valentin T. Jordanov, Glenn F. Knoll, Alan C. Huber et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, 353: 261[14] ZHOU Jian-Bin, WANG Min, ZHOU Wei et al. Atomic Energy Science and Technology, 2014, 48(2): 352 (in Chinese)
  • 加载中

Cited by

1. Han, X., Yang, W., Li, F. FPGA implementation and measurement of cusp-flattop hybrid filter shaping method for nuclear instruments[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024. doi: 10.1016/j.nima.2024.169572
2. Zhou, H., Xu, F., Xie, Y. et al. Study on gamma spectrum measurement of high-dose-rate radiation[J]. Journal of Physics: Conference Series, 2024, 2770(1): 012015. doi: 10.1088/1742-6596/2770/1/012015
3. Wang, M., Zhou, J., Wang, H. et al. Pile-up Pulse Recognition Method Based on Ballistic Deficit Shape Feature | [基于弹道亏损形状特征的堆积脉冲识别方法][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2024, 58(1): 231-238. doi: 10.7538/yzk.2023.youxian.0167
4. Zhou, H., Xu, F., Wu, F. et al. Study on Pulse Polarity Self-Adapting of Digital MCA[J]. 2023. doi: 10.1145/3654446.3654457
5. Tang, L., Li, Y., Tang, Y. et al. Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy | [基于深度学习的 LSTM 模型在 X 荧光光谱中的应用][J]. He Jishu/Nuclear Techniques, 2023, 46(7): 070502. doi: 10.11889/j.0253-3219.2023.hjs.46.070502
6. Kumar Paul, R., Das, A., Dhara, P. et al. Implementation of FPGA based real-time digital DAQ for high resolution, and high count rate nuclear spectroscopy application[J]. Journal of Instrumentation, 2023, 18(7): P07042. doi: 10.1088/1748-0221/18/07/P07042
7. Ma, X.-K., Huang, H.-Q., Huang, B.-R. et al. X-ray spectra correction based on deep learning CNN-LSTM model[J]. Measurement: Journal of the International Measurement Confederation, 2022. doi: 10.1016/j.measurement.2022.111510
8. Wang, Q., Zhang, X., Meng, X. et al. Multi-channel analyzer based on a novel pulse fitting analysis method[J]. Nuclear Engineering and Technology, 2022, 54(6): 2023-2030. doi: 10.1016/j.net.2021.12.019
9. Xiao-feng, Y., Hong-Quan, H., Guo-Qiang, Z. et al. Pulse Pile-up Correction by Particle Swarm Optimization with Double-layer Parameter Identification Model in X-ray Spectroscopy[J]. Journal of Signal Processing Systems, 2022, 94(4): 377-386. doi: 10.1007/s11265-021-01698-4
10. Hao, J., Li, F., Wang, Q. et al. Quantitative analysis of trace elements of silver disturbed by pulse pile up based on energy dispersive X-ray fluorescence (EDXRF) technique[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. doi: 10.1016/j.nima.2021.165672
11. Tang, L., Zhang, J., Shi, K. et al. Application of an improved seeds local averaging algorithm in x-ray spectrum[J]. Mathematical Problems in Engineering, 2021. doi: 10.1155/2021/5545818
12. Wang, X., Li, Z.H., Liu, Z. et al. An effective digital pulse processing method for pile-up pulses in decay studies of short-lived nuclei[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020. doi: 10.1016/j.nima.2020.164068
13. Wang, M., Hong, X., Zhou, J.-B. et al. Rising time restoration for nuclear pulse using a mathematic model[J]. Applied Radiation and Isotopes, 2018. doi: 10.1016/j.apradiso.2018.01.018
14. Hong, X., Zhou, J., Ni, S. et al. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping[J]. Journal of Synchrotron Radiation, 2018, 25(2): 505-513. doi: 10.1107/S1600577518000322
15. Hong, X., Zhou, J.-B., Zhao, X. et al. Digital on-line uranium concentration determination system design[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(10): 1004-1007.
16. Hong, X., Ni, S.-J., Zhou, J.-B. et al. Study on the relationship between the shaping parameters of trapezoidal pulse shaping algorithm and the trapezoidal pulse shape[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(2): 150-153 and 158.
Get Citation
ZHOU Jian-Bin, LIU Yi, HONG Xu, ZHOU Jin, MA Ying-Jie, WANG Min, HU Yun-Chuan, CHEN Bao and YUE Ai-Zhong. Trapezoidal pulse shaping for pile-up pulse identification in X-ray spectrometry[J]. Chinese Physics C, 2015, 39(6): 068201. doi: 10.1088/1674-1137/39/6/068201
ZHOU Jian-Bin, LIU Yi, HONG Xu, ZHOU Jin, MA Ying-Jie, WANG Min, HU Yun-Chuan, CHEN Bao and YUE Ai-Zhong. Trapezoidal pulse shaping for pile-up pulse identification in X-ray spectrometry[J]. Chinese Physics C, 2015, 39(6): 068201.  doi: 10.1088/1674-1137/39/6/068201 shu
Milestone
Received: 2014-09-28
Revised: 2014-12-19
Article Metric

Article Views(2117)
PDF Downloads(131)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Trapezoidal pulse shaping for pile-up pulse identification in X-ray spectrometry

    Corresponding author: LIU Yi,

Abstract: Energy resolution is affected by the intrinsic energy resolution of the detector, ballistic deficit, pile-up pulses and noise. Pile-up pulses become the dominant factor that degrades energy resolution after the system is established, so pile-up rejection is often applied to obtain good energy resolution by discarding pulses that are expected to be contaminated by pile-up. However, pile-up rejection can reduce count rates and thus lower the measurement precision. In order to improve count rates and maintain energy resolution, a new method of pile-up pulse identification based on trapezoidal pulse shaping is presented. Combined with pulse width discrimination, this method is implemented by recording pulses that are not seriously piled up. Some experimental tests with a Cu-Pb alloy sample are carried out to verify the performance of this method in X-ray spectrometry. The results show that the method can significantly improve count rates without degrading energy resolution.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return