Monochromatic X-ray-induced thermal effect on four-reflection

Cited by

1. Chen, H., Wu, D., Zhang, M.-Y. et al. Thermodynamic topology of phantom AdS black holes in massive gravity[J]. Physics of the Dark Universe, 2024. doi: 10.1016/j.dark.2024.101617
2. Abdusattar, H., Kong, S.-B. Cooling-heating properties of the FRW universe in gravity with a generalized conformal scalar field[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116719
3. Malik, A., Chaudhary, S., Metwally, A.S.M. Joule–Thomson expansion and images of black hole in SU(N)-non-linear sigma model[J]. European Physical Journal C, 2024, 84(6): 610. doi: 10.1140/epjc/s10052-024-12857-9
4. Yasir, M., Xia, T., Ditta, A. et al. Joule-Thomson expansion of Bardeen black hole with a cloud of strings[J]. International Journal of Modern Physics A, 2024, 39(11-12): 2450046. doi: 10.1142/S0217751X24500465
5. Guo, Y., Xie, H., Miao, Y.-G. Joule-Thomson effect of AdS black holes in conformal gravity[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116280
6. Zhang, M.-Y., Hassanabadi, H., Chen, H. et al. Critical behavior and Joule-Thomson expansion of charged anti-de Sitter black hole in four-dimensional Rastall gravity[J]. International Journal of Modern Physics A, 2023, 38(18-19): 2350087. doi: 10.1142/S0217751X23500872
7. Yang, S., Tao, J., Mu, B. et al. Lyapunov exponents and phase transitions of Born-Infeld AdS black holes[J]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(7): 045. doi: 10.1088/1475-7516/2023/07/045
8. Wen, S., Hong, W., Tao, J. Observational appearances of magnetically charged black holes in Born–Infeld electrodynamics[J]. European Physical Journal C, 2023, 83(4): 277. doi: 10.1140/epjc/s10052-023-11431-z
9. Masmar, K.. Joule-Thomson expansion for a nonlinearly charged Anti-de Sitter black hole[J]. International Journal of Geometric Methods in Modern Physics, 2023, 20(5): 2350080. doi: 10.1142/S0219887823500809
10. Li, N., Li, J.-Y., Su, B.-Y. The Joule–Thomson and Joule–Thomson-Like Effects of the Black Holes in a Cavity[J]. Fortschritte der Physik, 2023, 71(2-3): 2200166. doi: 10.1002/prop.202200166
11. Graça, J.P.M., Capossoli, E.F., Boschi-Filho, H. et al. Joule-Thomson expansion for quantum corrected AdS-Reissner-Nördstrom black holes in a Kiselev spacetime[J]. Physical Review D, 2023, 107(2): 024045. doi: 10.1103/PhysRevD.107.024045
12. Abdusattar, H., Kong, S.-B., You, W.-L. et al. First principle study of gravitational pressure and thermodynamic8s of FRW universe[J]. Journal of High Energy Physics, 2022, 2022(12): 168. doi: 10.1007/JHEP12(2022)168
13. Cao, Y., Feng, H., Tao, J. et al. Black holes in a cavity: Heat engine and Joule-Thomson expansion[J]. General Relativity and Gravitation, 2022, 54(9): 105. doi: 10.1007/s10714-022-02990-9
14. Barrientos, J., Mena, J. Joule-Thomson expansion of AdS black holes in quasitopological electromagnetism[J]. Physical Review D, 2022, 106(4): 044064. doi: 10.1103/PhysRevD.106.044064
15. He, A., Tao, J., Wang, P. et al. Effects of Born–Infeld electrodynamics on black hole shadows[J]. European Physical Journal C, 2022, 82(8): 683. doi: 10.1140/epjc/s10052-022-10637-x
16. Zhang, C.-M., Zhang, M., Zou, D.-C. Joule-Thomson expansion of Born-Infeld AdS black holes in consistent 4D Einstein-Gauss-Bonnet gravity[J]. Modern Physics Letters A, 2022, 37(11): 2250063. doi: 10.1142/S0217732322500638
17. Silva, G.V., Bezerra, V.B., Graça, J.P.M. et al. Joule Thomson expansion in charged AdS black hole surrounded by a cosmological fluid in Rainbow Gravity[J]. Modern Physics Letters A, 2021, 36(40): 2150278. doi: 10.1142/S0217732321502783
18. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
19. Biswas, A.. Joule-Thomson expansion of AdS black holes in Einstein Power-Yang-mills gravity[J]. Physica Scripta, 2021, 96(12): 125310. doi: 10.1088/1402-4896/ac2b42
20. Zarepour, S.. Holographic Joule-Thomson expansion in lower dimensions[J]. Physica Scripta, 2021, 96(12): 125011. doi: 10.1088/1402-4896/ac2b49
21. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
22. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
23. Xing, J.-T., Meng, Y., Kuang, X.-M. Joule-Thomson expansion for hairy black holes[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021. doi: 10.1016/j.physletb.2021.136604
24. Cao, Y., Feng, H., Hong, W. et al. Joule-Thomson expansion of RN-AdS black hole immersed in perfect fluid dark matter[J]. Communications in Theoretical Physics, 2021, 73(9): 095403. doi: 10.1088/1572-9494/ac1066
25. Graça, J.P.M., Capossoli, E.F., Boschi-Filho, H. Joule-Thomson expansion for noncommutative uncharged black holes[J]. EPL, 2021, 135(4): 41002. doi: 10.1209/0295-5075/ac24c1
26. Tataryn, M.B., Stetsko, M.M. Thermodynamics of a static electric-magnetic black hole in Einstein-Born-Infeld-AdS theory with different horizon geometries[J]. General Relativity and Gravitation, 2021, 53(8): 72. doi: 10.1007/s10714-021-02842-y
27. Mirza, B., Naeimipour, F., Tavakoli, M. Joule-Thomson Expansion of the Quasitopological Black Holes[J]. Frontiers in Physics, 2021. doi: 10.3389/fphy.2021.628727
28. Feng, Z.-W., Zhou, X., He, G. et al. Joule-Thomson expansion of higher dimensional nonlinearly AdS black hole with power Maxwell invariant source[J]. Communications in Theoretical Physics, 2021, 73(6): 065401. doi: 10.1088/1572-9494/abecd9
Get Citation
HU Ling-Fei, GAO Li-Dan, LI Zhen-Jie, WANG Shan-Feng, SHENG Wei-Fan, LIU Peng and XU Wei. Monochromatic X-ray-induced thermal effect on four-reflection [J]. Chinese Physics C, 2015, 39(9): 096004. doi: 10.1088/1674-1137/39/9/096004
HU Ling-Fei, GAO Li-Dan, LI Zhen-Jie, WANG Shan-Feng, SHENG Wei-Fan, LIU Peng and XU Wei. Monochromatic X-ray-induced thermal effect on four-reflection [J]. Chinese Physics C, 2015, 39(9): 096004.  doi: 10.1088/1674-1137/39/9/096004 shu
Milestone
Received: 2015-01-20
Revised: 1900-01-01
Article Metric

Article Views(1985)
PDF Downloads(80)
Cited by(30)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Monochromatic X-ray-induced thermal effect on four-reflection

    Corresponding author: XU Wei,

Abstract: The high energy resolution monochromator (HRM) is widely used in inelastic scattering programs to detect phonons with energy resolution, down to the meV level. Although the large amount of heat from insertion devices can be reduced by a high heat-load monochromator, the unbalanced heat load on the inner pair of crystals in a nested HRM can affect its overall performance. Here, a theoretical analysis of the unbalanced heat load using dynamical diffraction theory and finite element analysis is presented. By utilizing the ray-tracing method, the performance of different HRM nesting configurations is simulated. It is suggested that the heat balance ratio, energy resolution, and overall spectral transmission efficiency are the figures of merit for evaluating the performance of nested HRMs. Although the present study is mainly focused on nested HRMs working at 57Fe nuclear resonant energy at 14.4 keV, it is feasible to extend this to other nested HRMs working at different energies.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return