SUSY effects in Higgs production at high energy e+e- colliders

  • Considering the constraints from collider experiments and dark matter detection, we investigate the SUSY effects in the Higgs production channels e+e-→Zh at an e+e- collider with a center-of-mass energy above 240 GeV and γγ→h→bb at a photon collider with a center-of-mass energy above 125 GeV. In the parameter space allowed by current experiments, we find that the SUSY corrections to e+e-→Zh can reach a few percent and the production rate of γγ→h→bb can be enhanced by a factor of 1.2 over the SM prediction. We also calculate the exotic Higgs production e+e-→Zh1 in the next-to-minimal supersymmetric model (NMSSM) (h is the SM-like Higgs, h1 is the CP-even Higgs bosons which can be much lighter than h). We find that at a 250 GeV e+e- collider the production rates of e+e-→Zh1 can reach 60 fb.
      PCAS:
  • 加载中
  • [1] Aad et al (ATLAS Collaboration), Phys.Lett. B, 716: 1-29(2012); Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30-61(2012)
    [2] J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett. B, 262: 477(1991); R. Barbieri and M. Frigeni, Phys. Lett. B, 258: 395(1991); A. Brignole, J. R. Ellis, G. Ridolfi et al, Phys. Lett. B, 271: 123(1991); M. Carena, K. Sasaki, and C.E.M. Wagner, Nucl. Phys. B, 381: 66(1992); H. E. Haber and R. Hempfling, Phys. Rev. D, 48: 4280(1993); P. H. Chankowski, S. Pokorski, and J. Rosiek, Phys. Lett. B, 281: 100(1992)
    [3] J. Cao, Z. Heng, J. M. Yang et al, JHEP, 1210: 079(2012); J. Cao, Z. X. Heng, J. M. Yang et al, JHEP, 1203: 086(2012); M. Carena, S. Gori, N. R. Shah et al, JHEP, 1203: 014(2012); J. Ellis and K. A. Olive, Eur. Phys. J. C, 72: 2005(2012)
    [4] G. Belanger, B. Dumont, U. Ellwanger et al, Phys. Rev. D, 88: 075008(2013)
    [5] P. P. Giardino, K. Kannike, I. Masina et al, JHEP, 1405: 046(2014)
    [6] S. S. AbdusSalam, Phys. Rev. D, 87: 115012(2013); S. S. AbdusSalam and D. Choudhury, Universal J. Phys. Appl., 2(3): 155(2014)
    [7] C. Han, K. i. Hikasa, L. Wu et al, JHEP, 1310: 216(2013); C. Han, A. Kobakhidze, N. Liu et al, JHEP, 1402: 049(2014); C. Han, L. Wu, J. M. Yang et al, Phys. Rev. D, 91: 055030(2015); C. Han, arXiv: 1409.7000[hep-ph]; C. Han, D. Kim, S. Munir et al, JHEP, 1504: 132(2015); J. Cao, C. Han, L. Wu et al, JHEP, 1211: 039(2012); T. A. W. Martin and D. Morrissey, JHEP, 1412: 168(2014); L. Calibbi, J. M. Lindert, T. Ota et al, arXiv:1405.3884[hep-ph]; H. Baer, A. Mustafayev, and X. Tata, Phys. Rev. D, 89: 055007(2014); M. Low and L. T. Wang, JHEP, 1408: 161(2014)
    [8] M. E. Peskin, arXiv:1207.2516[hep-ph]
    [9] A. Blondel, A. Chao, W. Chou et al, arXiv:1302.3318[physics.acc-ph]; R. Belusevic and T. Higo, arXiv:1208.4956[physics.acc-ph]
    [10] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B, 106: 292(1976)
    [11] J. Fleischer and F. Jegerlehner, Nucl. Phys. B, 216: 469(1983); G. J. Gounaris and F. M. Renard, Phys. Rev. D, 90(7): 073007(2014)
    [12] B. A. Kniehl, Z. Phys. C, 55: 605(1992)
    [13] A. Denner, J. Kublbeck, R. Mertig et al, Z. Phys. C, 56: 261(1992); N. Liu, J. Ren, L. Wu et al, JHEP, 1404: 189(2014)
    [14] F. A. Berends and R. Kleiss, Nucl. Phys. B, 260: 32(1985)
    [15] P. H. Chankowski, S. Pokorski, and J. Rosiek, Nucl. Phys. B, 423: 437(1994); V. Driesen and W. Hollik, Z. Phys. C, 68: 485(1995); V. Driesen, W. Hollik, and J. Rosiek, Z. Phys. C, 71: 259(1996)
    [16] D. Lopez-Val and J. Sola, Phys. Lett. B, 702: 246(2011); P. Niezurawski, A. F. Zarnecki, and M. Krawczyk, eConf C, 050318: 0112(2005); M. M. Muhlleitner, M. Kramer, M. Spira et al, Phys. Lett. B, 508: 311(2001)
    [17] S. Bae, B. Chung and P. Ko, Eur. Phys. J. C, 54: 601(2008); S. Y. Choi and J. S. Lee, Phys. Rev. D, 62: 036005(2000)
    [18] J. Cao, F. Ding, C. Han et al, JHEP, 1311: 018(2013); N. E. Bomark, S. Moretti, S. Munir et al, JHEP, 1502: 044(2015); C. Han, D. Kim, S. Munir et al, JHEP, 1507: 002(2015)
    [19] S. Dimopoulos and D. W. Sutter, Nucl. Phys. B, 452: 496(1995); H. E. Haber, Nucl. Phys. Proc. Suppl., 62: 469(1998); G. L. Kane, PoS silafae-III (2000) 013
    [20] A. H. Chamseddine, R. L. Arnowitt, and P. Nath, Phys. Rev. Lett., 49: 970(1982)
    [21] M. Frank, T. Hahn, S. Heinemeyer et al, JHEP, 0702: 047(2007); G. Degrassi, S. Heinemeyer, W. Hollik et al, Eur. Phys. J. C, 28: 133(2003); S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun., 124: 76(2000); S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C, 9: 343(1999)
    [22] P. Bechtle, O. Brein, S. Heinemeyer et al, Comput. Phys. Commun., 182: 2605(2011); P. Bechtle, O. Brein, S. Heinemeyer et al, Comput. Phys. Commun., 181: 138(2010)
    [23] F. Mahmoudi, Comput. Phys. Commun., 180: 1579(2009); Comput. Phys. Commun., 178: 745(2008)
    [24] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 571: A16(2014)
    [25] D. S. Akerib et al (LUX Collaboration), Phys. Rev. Lett., 112: 091303(2014)
    [26] G. Belanger, F. Boudjema, P. Brun et al, Comput. Phys. Commun., 182: 842(2011)
    [27] J. Cao and J. M. Yang, JHEP, 0812: 006(2008)
    [28] J. Beringer et al (Particle Data Group Collaboration), Phys. Rev. D, 86: 010001(2012)
    [29] J. Cao, Z. Heng, D. Li et al, Phys. Lett. B, 710: 665(2012)
    [30] J.-h. Park, Phys. Rev. D, 83: 055015(2011); D. Chowdhury, R. M. Godbole, K. A. Mohan et al, JHEP, 1402: 110(2014); M. Bobrowski, G. Chalons, W. G. Hollik et al, Phys. Rev. D, 90(3): 035025(2014); Phys. Rev. D, 92(5) 059901(2015)
    [31] T. Kitahara and T. Yoshinaga, JHEP, 1305: 035(2013)
    [32] Aad et al (ATLAS Collaboration), ATLAS-CONF-2013-047;ATLAS-CONF-2013-061;ATLAS-CONF-2013-062; ATLAS-CONF-2013-026;ATLAS-CONF-2013-007; JHEP, 1310: 130(2013), JHEP, 1401: 109(2014)
    [33] B. C. Allanach, Phys. Rev. D, 83: 095019(2011)
    [34] T. Hahn, Comput. Phys. Commun., 140: 418(2001)
    [35] T. Hahn, M. Perez-Victoria, Comput. Phys. Commun., 118: 153(1999)
    [36] G. J. van Oldenborgh, Phys Commun, 66(1): NIKHEF-H-90-15(1991); A. Denner, Fortschr. Phys., 41: 307(1993)
    [37] F. del Aguila, A. Culatti, R. Tapia et al, Nucl. Phys. B, 537: 561(1999); W. Siegel, Phys. Lett. B, 84: 193(1979); T. Hahn and M. Perez-Victoria, Comput. Phys. Commun., 118: 153(1999)
    [38] A. Denner, Fortschr. Phys., 41: 307(1993)
    [39] G.t Hooft and M. Veltman, Nucl. Phys. B, 153: 365(1979); A. Denner, Fortschr. Phys., 41: 307(1993)
    [40] T. Kinoshita, J. Math. Phys., 3: 650(1962); T.D. Lee and M. Nauenberg, Phys. Rev., 133: 1549(1964)
    [41] S. Dawson and L. Reina, Phys. Rev. D, 59: 054012(1999)
    [42] G.P. Legage, J. Comput. Phys., 27: 192(1978)
    [43] I. F. Ginzburg, G. L. Kotkin, S. L. Panfil et al, Nucl. Instrum, 219: 5(1984); V. I. Telnov, Nucl. Instrum. Meth., 294: 72(1990)
    [44] M. Frank, T. Hahn, S. Heinemeyer et al, JHEP, 0702: 047(2007); A. Brignole, Phys. Lett. B, 281: 284(1992); M. Frank, S. Heinemeyer, W. Hollik et al, hep-ph/0212037; A. Freitas and D. Stockinger, hep-ph/0210372; A. Bharucha, A. Fowler, G. Moortgat-Pick et al, JHEP, 1305: 053(2013); T. Fritzsche, T. Hahn, S. Heinemeyer et al, Comput. Phys. Commun., 185: 1529(2014)
    [45] A. Freitas, A. von Manteuffel and P. M. Zerwas, Eur. Phys. J. C, 40: 435(2005)
    [46] S. Dawson et al, arXiv:1310.8361[hep-ex]; T. Han, Z. Liu, and J. Sayre, Phys. Rev. D, 89: 113006(2014); M. E. Peskin, arXiv:1312.4974[hep-ph]; P. Bechtle, S. Heinemeyer, O. Stal et al, JHEP, 1411: 039(2014)
    [47] M. Koratzinos et al, arXiv:1305.6498[physics.acc-ph]; M. Bicer et al[TLEP Design Study Working Group Collaboration], JHEP, 1401: 164(2014)
    [48] S. A. Bogacz, J. Ellis, L. Lusito et al, arXiv:1208.2827[physics.acc-ph]; D. M. Asner, J. B. Gronberg, and J. F. Gunion, Phys. Rev. D, 67: 035009(2003); I. F. Ginzburg, G. L. Kotkin, V. G. Serbo et al, JETP Lett., 34: 491(1981); I. F. Ginzburg, G. L. Kotkin, V. G. Serbo et al, Nucl. Instrum. Meth., 205: 47(1983); B. Badelek et al. (ECFA/DESY Photon Collider Working Group Collaboration), Int. J. Mod. Phys. A, 19: 5097(2004)[hep-ex/0108012]; P. Niezurawski, A. F. Zarnecki and M. Krawczyk, hep-ph/0307183; D. Asner et al, Eur. Phys. J. C, 28: 27(2003)[hep-ex/0111056]; W. Chou, G. Mourou, N. Solyak et al, arXiv:1305.5202[physics.acc-ph]; V. I. Telnov, arXiv:1308.4868[physics.acc-ph]
    [49] S. L. Hu, N. Liu, J. Ren et al, J. Phys. G, 41(12): 125004(2014)
  • 加载中

Get Citation
null. SUSY effects in Higgs production at high energy e+e- colliders[J]. Chinese Physics C, 2016, 40(11): 113104. doi: 10.1088/1674-1137/40/11/113104
null. SUSY effects in Higgs production at high energy e+e- colliders[J]. Chinese Physics C, 2016, 40(11): 113104.  doi: 10.1088/1674-1137/40/11/113104 shu
Milestone
Received: 2015-09-14
Revised: 2016-07-09
Fund

    Supported by National Natural Science Foundation of China (NNSFC)(10821504, 11222548, 11305049, 11135003), Program for New Century Excellent Talents in University, and ARC Center of Excellence for Particle Physics at Tera-scale. C. Han is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

Article Metric

Article Views(1609)
PDF Downloads(35)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

SUSY effects in Higgs production at high energy e+e- colliders

Fund Project:  Supported by National Natural Science Foundation of China (NNSFC)(10821504, 11222548, 11305049, 11135003), Program for New Century Excellent Talents in University, and ARC Center of Excellence for Particle Physics at Tera-scale. C. Han is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

Abstract: Considering the constraints from collider experiments and dark matter detection, we investigate the SUSY effects in the Higgs production channels e+e-→Zh at an e+e- collider with a center-of-mass energy above 240 GeV and γγ→h→bb at a photon collider with a center-of-mass energy above 125 GeV. In the parameter space allowed by current experiments, we find that the SUSY corrections to e+e-→Zh can reach a few percent and the production rate of γγ→h→bb can be enhanced by a factor of 1.2 over the SM prediction. We also calculate the exotic Higgs production e+e-→Zh1 in the next-to-minimal supersymmetric model (NMSSM) (h is the SM-like Higgs, h1 is the CP-even Higgs bosons which can be much lighter than h). We find that at a 250 GeV e+e- collider the production rates of e+e-→Zh1 can reach 60 fb.

    HTML

Reference (49)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return