Application of the first collision source method to CSNS target station shielding calculation

  • Ray effects are an inherent problem of the discrete ordinates method. RAY3D, a functional module of ARES, which is a discrete ordinates code system, employs a semi-analytic first collision source method to mitigate ray effects. This method decomposes the flux into uncollided and collided components, and then calculates them with an analytical method and discrete ordinates method respectively. In this article, RAY3D is validated by the Kobayashi benchmarks and applied to the neutron beamline shielding problem of China Spallation Neutron Source(CSNS) target station. The numerical results of the Kobayashi benchmarks indicate that the solutions of DONTRAN3D with RAY3D agree well with the Monte Carlo solutions. The dose rate at the end of the neutron beamline is less than 10.83 μSv/h in the CSNS target station neutron beamline shutter model. RAY3D can effectively mitigate the ray effects and obtain relatively reasonable results.
      PCAS:
  • [1] J. WEI, H. S. CHEN, Y. W. CHEN et al, Nucl. Instrum. Methods Phys. Res. A, 600:10(2009)
    [2] Y. X. CHEN, B. ZHANG, Q. Y. ZANG et al, Energ. Sci. Tech., 47(Suppl.):477(2013)(in Chinese)
    [3] T. A. Wareing, J. E. Morel, D. K. Parsons, A First Collision Source Method for ATTILA. In:Proc. ANS RPSD Top. Conf., Nashville.(1998)
    [4] K. Kobayashi, OECD Proceedings, 403(1997)
    [5] M. T. CHEN, B. ZHANG, Y. X. CHEN, Verification for Ray Effects Elimination Module of Radiation Shielding Code ARES by Kobayashi Benchmarks, In:the 22nd Int. Conf. Nucl. Eng., Czech Republic,(2014)
    [6] K. Kobayashi, N. Sugimura, Y. Nagaya. Prog. Nucl. Energ., 39(2):119(2000)
    [7] J. F. Briesmeister, Los Alamos National Laboratory, 1997, Tech. Rep. LA-12625-M.(1997)
    [8] W. A. Rhoades, M. B. Emmett, Oak Ridge National Lab,1982, Tech. Rep. ORNI/TM-8362,(1982)
    [9] K. Kosako, C. Konno, Journal of Nucl. Sci. Tech., 37(sup1):475(2000)
    [10] C. Konno, Prog. Nucl. Energ., 39(2):167(2001)
    [11] B. ZHANG, Y. X. CHEN, W. J. WU et al. Chin. Phys. C, 35(8):791(2011)
    [12] J. WU, Y. X. CHEN, W. J. WU et al. Chin. Phys. C, 36(3):275(2012)
    [13] M. B. Chadwick, P. Obložinsk, M. Herman et al, Nucl. Data sheets, 107(12), 2931(2006)
    [14] R. E. MacFarlane, D. W. Muir, Los Alamos National Laboratory, 1994, Tech. Rep. LA-12740-M,(1994)
    [15] Q. Z. YU, W. Y, T. J. LIANG, Acta Phys. Sin, 5(5):194(2011)(in Chinese)
    [16] R. E. Alcouffe, R. D. O'Dell, Jr. F. W, Brinkley, Nucl. Sci. Eng., 105(2):198(1990)
  • [1] J. WEI, H. S. CHEN, Y. W. CHEN et al, Nucl. Instrum. Methods Phys. Res. A, 600:10(2009)
    [2] Y. X. CHEN, B. ZHANG, Q. Y. ZANG et al, Energ. Sci. Tech., 47(Suppl.):477(2013)(in Chinese)
    [3] T. A. Wareing, J. E. Morel, D. K. Parsons, A First Collision Source Method for ATTILA. In:Proc. ANS RPSD Top. Conf., Nashville.(1998)
    [4] K. Kobayashi, OECD Proceedings, 403(1997)
    [5] M. T. CHEN, B. ZHANG, Y. X. CHEN, Verification for Ray Effects Elimination Module of Radiation Shielding Code ARES by Kobayashi Benchmarks, In:the 22nd Int. Conf. Nucl. Eng., Czech Republic,(2014)
    [6] K. Kobayashi, N. Sugimura, Y. Nagaya. Prog. Nucl. Energ., 39(2):119(2000)
    [7] J. F. Briesmeister, Los Alamos National Laboratory, 1997, Tech. Rep. LA-12625-M.(1997)
    [8] W. A. Rhoades, M. B. Emmett, Oak Ridge National Lab,1982, Tech. Rep. ORNI/TM-8362,(1982)
    [9] K. Kosako, C. Konno, Journal of Nucl. Sci. Tech., 37(sup1):475(2000)
    [10] C. Konno, Prog. Nucl. Energ., 39(2):167(2001)
    [11] B. ZHANG, Y. X. CHEN, W. J. WU et al. Chin. Phys. C, 35(8):791(2011)
    [12] J. WU, Y. X. CHEN, W. J. WU et al. Chin. Phys. C, 36(3):275(2012)
    [13] M. B. Chadwick, P. Obložinsk, M. Herman et al, Nucl. Data sheets, 107(12), 2931(2006)
    [14] R. E. MacFarlane, D. W. Muir, Los Alamos National Laboratory, 1994, Tech. Rep. LA-12740-M,(1994)
    [15] Q. Z. YU, W. Y, T. J. LIANG, Acta Phys. Sin, 5(5):194(2011)(in Chinese)
    [16] R. E. Alcouffe, R. D. O'Dell, Jr. F. W, Brinkley, Nucl. Sci. Eng., 105(2):198(1990)
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
Ying Zheng, Bin Zhang, Meng-Teng Chen, Liang Zhang, Bo Cao, Yi-Xue Chen, Wen Yin and Tian-Jiao Liang. Application of the first collision source method to CSNS target station shielding calculation[J]. Chinese Physics C, 2016, 40(4): 046201. doi: 10.1088/1674-1137/40/4/046201
Ying Zheng, Bin Zhang, Meng-Teng Chen, Liang Zhang, Bo Cao, Yi-Xue Chen, Wen Yin and Tian-Jiao Liang. Application of the first collision source method to CSNS target station shielding calculation[J]. Chinese Physics C, 2016, 40(4): 046201.  doi: 10.1088/1674-1137/40/4/046201 shu
Milestone
Received: 2015-06-03
Fund

    Supported by Major National S T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant(2011ZX06004-007), National Natural Science Foundation of China(11505059, 11575061), and the Fundamental Research Funds for the Central Universities(13QN34)

Article Metric

Article Views(1952)
PDF Downloads(242)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Application of the first collision source method to CSNS target station shielding calculation

    Corresponding author: Yi-Xue Chen,
Fund Project:  Supported by Major National S T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant(2011ZX06004-007), National Natural Science Foundation of China(11505059, 11575061), and the Fundamental Research Funds for the Central Universities(13QN34)

Abstract: Ray effects are an inherent problem of the discrete ordinates method. RAY3D, a functional module of ARES, which is a discrete ordinates code system, employs a semi-analytic first collision source method to mitigate ray effects. This method decomposes the flux into uncollided and collided components, and then calculates them with an analytical method and discrete ordinates method respectively. In this article, RAY3D is validated by the Kobayashi benchmarks and applied to the neutron beamline shielding problem of China Spallation Neutron Source(CSNS) target station. The numerical results of the Kobayashi benchmarks indicate that the solutions of DONTRAN3D with RAY3D agree well with the Monte Carlo solutions. The dose rate at the end of the neutron beamline is less than 10.83 μSv/h in the CSNS target station neutron beamline shutter model. RAY3D can effectively mitigate the ray effects and obtain relatively reasonable results.

    HTML

Reference (16)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return