Global α-decay study based on the mass table of the relativistic continuum Hartree-Bogoliubov theory

  • The α-decay energies(Qα) are systematically investigated with the nuclear masses for 10 ≤ Z ≤ 120 isotopes obtained by the relativistic continuum Hartree-Bogoliubov(RCHB) theory with the covariant density functional PC-PK1, and compared with available experimental values. It is found that the α-decay energies deduced from the RCHB results present a similar pattern to those from available experiments. Owing to the large predicted Qα values(≥ 4 MeV), many undiscovered heavy nuclei in the proton-rich side and super-heavy nuclei may have large possibilities for α-decay. The influence of nuclear shell structure on α-decay energies is also analysed.
      PCAS:
  • 加载中
  • [1] A. Sobiczewski, and K. Pomorski, Prog. Part., Nucl. Phys., 58:292(2007)
    [2] A. H. Becquerel, CR Acad. Sci. Paris, 122:1086(1896)
    [3] V. V. Jr, G. Seaborg, J. Inorg. Nucl. Chem., 28:741(1966)
    [4] Y. Hatsukawa, H. Nakahara, and D. C. Hoffman, Phys. Rev. C, 42:674(1990)
    [5] B. A. Brown, Phys. Rev. C, 46:811(1992)
    [6] G. Royer, J. Phys. G:Nucl. Part. Phys., 26:1149(2000)
    [7] T. K. Dong, and Z. Z. Ren, Eur. Phys. J. A., 26:69(2005)
    [8] T. K. Dong and Z. Z. Ren, Eur. Phys. J. A. 26, 69 (2005).
    [9] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C, 36:1603(2012)
    [10] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).
    [11] C. F. V. Weizscker, Z. Phys. A, 96:431(1935)
    [12] C. F. v. Weizscker, Z. Phys. A 96, 431 (1935).
    [13] P. Mller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables, 59:185(1995)
    [14] P. Mller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
    [15] J. M. Pearson, R. C. Nayak, and S. Goriely, Phys. Lett., B, 387:455(1996)
    [16] N. Wang, M. Liu, and X. Wu, Phys. Rev. C, 81:044322(2010)
    [17] J. M. Pearson, R. C. Nayak, and S. Goriely, Phys. Lett. B 387, 455 (1996).
    [18] N. Wang, M. Liu, and X. Wu, Phys. Rev. C 81, 044322 (2010).
    [19] N. Wang, Z. Liang, M. Liu, and X. Wu, Phys. Rev. C, 82:044304(2010)
    [20] N. Wang, Z. Liang, M. Liu, and X. Wu, Phys. Rev. C 82,044304 (2010).
    [21] M. Liu, N. Wang, Y. G. Deng, and X. Z. Wu, Phys. Rev. C, 84:014333(2011)
    [22] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B, 734:215(2014)
    [23] M. Liu, N. Wang, Y. G. Deng, and X. Z. Wu, Phys. Rev. C 84,014333 (2011).
    [24] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014).
    [25] H. F. Zhang, J. M. Dong, N. N. Ma, G. Royer, J. Q. Li, and H. F. Zhang, Nucl. Phys. A, 929:38(2014)
    [26] H. F. Zhang, J. M. Dong, N. N. Ma, G. Royer, J. Q. Li, and H. F. Zhang, Nucl. Phys. A 929, 38 (2014).
    [27] N. N. Ma, H. F. Zhang, X. J. Bao, P. H. Chen, J. M. Dong, J. Q. Li, and H. F. Zhang, J. Phys. G:Nucl. Part. Phys., 42:095107(2015)
    [28] N. N. Ma, H. F. Zhang, X. J. Bao, P. H. Chen, J. M. Dong, J. Q. Li, and H. F. Zhang, J. Phys. G: Nucl. Part. Phys. 42,095107 (2015).
    [29] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett., 102:152503(2009)
    [30] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett.102, 152503 (2009).
    [31] S. Goriely, S. Hilaire, M. Girod, and S. Pru, Phys. Rev. Lett., 102:242501(2009)
    [32] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C, 82:035804(2010)
    [33] S. Goriely, S. Hilaire, M. Girod, and S. Pru, Phys. Rev. Lett.102, 242501 (2009).
    [34] B. D. Serot, and J. D. Walecka, Advances in Nuclear Physics, 16(1):(1986)
    [35] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82,035804 (2010).
    [36] P. Ring, Prog. Part. Nucl. Phys., 37:193(1996)
    [37] B. D. Serot and J. D. Walecka, Advances in nuclear physics 16 (1986).
    [38] P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
    [39] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep., 409:101(2005)
    [40] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).
    [41] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57:470(2006)
    [42] J. Meng, J. Y. Guo, J. Li, Z. P. Li, H. Z. Liang, W. H. Long, Y. F. Niu, Z. M. Niu, J. M. Yao, Y. Zhang et al, Prog. Phys., 31:199(2011)
    [43] J. Meng, H. Toki, S.-G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).
    [44] J. Meng, J.-Y. Guo, J. Li, Z. P. Li, H. Z. Liang, W. H. Long, Y. F. Niu, Z. M. Niu, J. M. Yao, Y. Zhang, et al., Prog. Phys.31, 199 (2011).
    [45] T. Nikić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys., 66:519(2011)
    [46] J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys., 8:55(2013)
    [47] T. Nikić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys.66, 519 (2011).
    [48] J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys.8, 55 (2013).
    [49] J. Meng, and S. G. Zhou, J. Phys. G:Nucl. Part. Phys., 42:093101(2015)
    [50] R. Brockmann, and R. Machleidt, Phys. Rev. C, 42:1965(1990)
    [51] J. Meng and S.-G. Zhou, J. Phys. G: Nucl. Part. Phys. 42,093101 (2015).
    [52] R. Brockmann and R. Machleidt, Phys. Rev. C 42, 1965 (1990).
    [53] M. M. Sharma, G. A. Lalazissis, and P. Ring, Phys. Lett. B, 317:9(1993)
    [54] A. Arima, M. Harvey, and K. Shimizu, Phys. Lett. B, 30:517(1969)
    [55] M. M. Sharma, G. A. Lalazissis, and P. Ring, Phys. Lett. B 317, 9 (1993).
    [56] A. Arima, M. Harvey, and K. Shimizu, Phys. Lett. B 30, 517 (1969).
    [57] K. T. Hecht, and A. Adler, Nucl. Phys. A, 137:129(1969)
    [58] K. T. Hecht and A. Adler, Nucl. Phys. A 137, 129 (1969).
    [59] J. N. Ginocchio, Phys. Rev. Lett., 78:436(1997)
    [60] J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima, Phys. Rev. C, 58:R628(1998)
    [61] J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).
    [62] J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima, Phys. Rev. C 58, R628 (1998).
    [63] J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Phys. Rev. C, 59:154(1999)
    [64] J. N. Ginocchio, A. Leviatan, J. Meng, and S. G. Zhou, Phys. Rev. C, 69:034303(2004)
    [65] J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Phys. Rev. C 59, 154 (1999).
    [66] J. N. Ginocchio, A. Leviatan, J. Meng, and S.-G. Zhou, Phys. Rev. C 69, 034303 (2004).
    [67] W. H. Long, H. Sagawa, J. Meng, and N. Van Giai, Phys. Lett. B, 639:242(2006)
    [68] H. Z. Liang, P. W. Zhao, Y. Zhang, J. Meng, and N. Van Giai, Phys. Rev. C, 83:041301(2011)
    [69] W. H. Long, H. Sagawa, J. Meng, and N. Van Giai, Phys. Lett. B 639, 242 (2006).
    [70] H. Z. Liang, P. W. Zhao, Y. Zhang, J. Meng, and N. Van Giai, Phys. Rev. C 83, 041301 (2011).
    [71] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. Lett., 109:072501(2012)
    [72] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. Lett. 109,072501 (2012).
    [73] J. Y. Guo, Phys. Rev. C, 85:021302(2012)
    [74] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C, 88:024323(2013)
    [75] J.-Y. Guo, Phys. Rev. C 85, 021302 (2012).
    [76] J. Y. Guo, S. W. Chen, Z. M. Niu, D. P. Li, and Q. Liu, Phys. Rev. Lett., 112:062502(2014)
    [77] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C 88, 024323 (2013).
    [78] J.-Y. Guo, S. W. Chen, Z. M. Niu, D. P. Li, and Q. Liu, Phys. Rev. Lett. 112, 062502 (2014).
    [79] H. Z. Liang, J. Meng, and S. G. Zhou, Phys. Rep., 570:1(2015)
    [80] S. G. Zhou, J. Meng, and P. Ring, Phys. Rev. Lett., 91:262501(2003)
    [81] H. Z. Liang, J. Meng, and S.-G. Zhou, Phys. Rep. 570, 1 (2015).
    [82] S.-G. Zhou, J. Meng, and P. Ring, Phys. Rev. Lett. 91, 262501 (2003).
    [83] H. Z. Liang, W. H. Long, J. Meng, and N. Van Giai, Eur. Phys. J. A, 44:119(2010)
    [84] W. Koepf, and P. Ring, Nucl. Phys. A, 493:61(1989)
    [85] H. Z. Liang, W. H. Long, J. Meng, and N. Van Giai, Eur. Phys. J. A 44, 119 (2010).
    [86] J. M. Yao, H. Chen, and J. Meng, Phys. Rev. C, 74:024307(2006)
    [87] W. Koepf and P. Ring, Nucl. Phys. A 493, 61 (1989).
    [88] J. M. Yao, H. Chen, and J. Meng, Phys. Rev. C 74, 024307 (2006).
    [89] A. Arima, Sci. China-Phys. Mech. Astron., 54:188(2011)
    [90] A. Arima, Sci. China-Phys. Mech. Astron. 54, 188 (2011).
    [91] J. Li, J. M. Yao, J. Meng, and A. Arima, Prog. Theor. Phys., 125:1185(2011)
    [92] J. X. Wei, J. Li, and J. Meng, Prog. Theor. Phys. Suppl., 196:400(2012)
    [93] J. Li, J. M. Yao, J. Meng, and A. Arima, Prog. Theor. Phys.125, 1185 (2011).
    [94] A. V. Afanasjev, P. Ring, and J. Knig, Nucl. Phys. A, 676:196(2000)
    [95] J. X. Wei, J. Li, and J. Meng, Prog. Theor. Phys. Suppl. 196,400 (2012).
    [96] A. V. Afanasjev, P. Ring, and J. Knig, Nucl. Phys. A 676,196 (2000).
    [97] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. C, 85:054310(2012)
    [98] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. C 85, 054310 (2012).
    [99] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett., 107:122501(2011)
    [100] P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B, 699:181(2011)
    [101] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett. 107, 122501 (2011).
    [102] P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B 699, 181 (2011).
    [103] D. Hirata, K. Sumiyoshi, I. Tanihata, Y. Sugahara, T. Tachibana, and H. Toki, Nucl. Phys. A, 616:438(1997)
    [104] G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data Tables, 71:1(1999)
    [105] D. Hirata, K. Sumiyoshi, I. Tanihata, Y. Sugahara, T. Tachibana, and H. Toki, Nucl. Phys. A 616, 438 (1997).
    [106] G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).
    [107] L. S. Geng, H. Toki, and J. Meng, Prog. Theor. Phys., 113:785(2005)
    [108] L. S. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785 (2005).
    [109] A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring, Phys. Lett. B, 726:680(2013)
    [110] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C, 89:054320(2014)
    [111] A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring, Phys. Lett. B 726, 680 (2013).
    [112] J. Meng, H. Toki, J. Y. Zeng, S. Q. Zhang, and S. G. Zhou, Phys. Rev. C, 65:041302(2002)
    [113] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C 89, 054320 (2014).
    [114] J. Meng, and P. Ring, Phys. Rev. Lett., 77:3963(1996)
    [115] J. Meng, H. Toki, J. Y. Zeng, S. Q. Zhang, and S.-G. Zhou, Phys. Rev. C 65, 041302 (2002).
    [116] J. Meng, and P. Ring, Phys. Rev. Lett., 80:460(1998)
    [117] J. Meng and P. Ring, Phys. Rev. Lett. 77, 3963 (1996).
    [118] J. Meng, Nucl. Phys. A, 635:3(1998)
    [119] J. Meng and P. Ring, Phys. Rev. Lett. 80, 460 (1998).
    [120] S. Q. Zhang, J. Meng, and S. G. Zhou, Sci. China G, 46:632(2003)
    [121] J. Meng, Nucl. Phys. A 635, 3 (1998).
    [122] S. Q. Zhang, J. Meng, and S.-G. Zhou, Sci. China G 46, 632 (2003).
    [123] J. Meng, I. Tanihata, and S. Yamaji, Phys. Lett. B, 419:1(1998)
    [124] J. Meng, S. G. Zhou, and I. Tanihata, Phys. Lett. B, 532:209(2002)
    [125] J. Meng, I. Tanihata, and S. Yamaji, Phys. Lett. B 419, 1 (1998).
    [126] J. Meng, S.-G. Zhou, and I. Tanihata, Phys. Lett. B 532, 209 (2002).
    [127] S. G. Zhou, J. Meng, P. Ring, E. G. Zhao et al, Phys. Rev. C, 82:011301(2010)
    [128] S.-G. Zhou, J. Meng, P. Ring, E.-G. Zhao, et al., Phys. Rev. C82, 011301 (2010).
    [129] L. L. Li, J. Meng, P. Ring, E. G. Zhao, S. G. Zhou et al, Phys. Rev. C, 85:024312(2012)
    [130] L. L. Li, J. Meng, P. Ring, E.-G. Zhao, S.-G. Zhou, et al., Phys. Rev. C 85, 024312 (2012).
    [131] Y. Chen, L. L. Li, H. Z. Liang, J. Meng et al. Phys. Rev. C, 85:067301(2012)
    [132] X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Sci. China-Phys. Mech. Astron., 56:2031(2013)
    [133] Y. Chen, L. L. Li, H. Z. Liang, J. Meng, et al., Phys. Rev. C85, 067301 (2012).
    [134] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C, 82:054319(2010)
    [135] X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Sci. China-Phys. Mech. Astron. 56, 2031 (2013).
    [136] X. W. Xia et al,(2016), in preparation
    [137] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C82, 054319 (2010).
    [138] X. W. Xia et al. (2016), in preparation.
    [139] H. Kucharek, and P. Ring, Z. Phys. A, 339:23(1991)
    [140] H. Kucharek and P. Ring, Z. Phys. A 339, 23 (1991).
    [141] G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C, 36:1287(2012)
    [142] G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1287 (2012).
    [143] E. Wigner, Phys. Rev., 51:106(1937)
    [144] E. Wigner, Phys. Rev. 51, 106 (1937).
    [145] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, Phys. Rev. Lett., 84:5493(2000)
    [146] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000).
    [147] R. Kanungo, I. Tanihata, and A. Ozawa, Phys. Lett. B, 528:58(2002)
    [148] W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Nucl. Phys. A, 753:106(2005)
    [149] R. Kanungo, I. Tanihata, and A. Ozawa, Phys. Lett. B 528,58 (2002).
    [150] W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Nucl. Phys. A 753, 106 (2005).
    [151] J. J. Li, W. H. Long, J. Margueron, and N. Van Giai, Phys. Lett. B, 732:169(2014)
    [152] J. J. Li, W. H. Long, J. Margueron, and N. Van Giai, Phys. Lett. B 732, 169 (2014).
    [153] K. Rutz, M. Bender, T. Brvenich, T. Schilling, P. G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C, 56:238(1997)
    [154] K. Rutz, M. Bender, T. Brvenich, T. Schilling, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 56, 238 (1997).
    [155] S. K. Patra, C. L. Wu, C. R. Praharaj, and R. K. Gupta, Nucl. Phys. A, 651:117(1999)ucl. Part. Phys. 26, 1149 (2000).
    [156] S. K. Patra, C.-L. Wu, C. R. Praharaj, and R. K. Gupta, Nucl. Phys. A 651, 117 (1999).
  • 加载中

Get Citation
Lin-Feng Zhang and Xue-Wei Xia. Global α-decay study based on the mass table of the relativistic continuum Hartree-Bogoliubov theory[J]. Chinese Physics C, 2016, 40(5): 054102. doi: 10.1088/1674-1137/40/5/054102
Lin-Feng Zhang and Xue-Wei Xia. Global α-decay study based on the mass table of the relativistic continuum Hartree-Bogoliubov theory[J]. Chinese Physics C, 2016, 40(5): 054102.  doi: 10.1088/1674-1137/40/5/054102 shu
Milestone
Received: 2015-10-15
Fund

    Supported by Major State 973 Program of China(2013CB834400), National Natural Science Foundation of China(11175002, 11335002, 11375015, 11461141002), Research Fund for the Doctoral Program of Higher Education(20110001110087) and National Undergraduate Innovation Training Programs of Peking University

Article Metric

Article Views(1780)
PDF Downloads(148)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Global α-decay study based on the mass table of the relativistic continuum Hartree-Bogoliubov theory

    Corresponding author: Xue-Wei Xia,
  • 1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
  • 2. Yuanpei College, Peking University, Beijing 100871, China
  • 3.  School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China
Fund Project:  Supported by Major State 973 Program of China(2013CB834400), National Natural Science Foundation of China(11175002, 11335002, 11375015, 11461141002), Research Fund for the Doctoral Program of Higher Education(20110001110087) and National Undergraduate Innovation Training Programs of Peking University

Abstract: The α-decay energies(Qα) are systematically investigated with the nuclear masses for 10 ≤ Z ≤ 120 isotopes obtained by the relativistic continuum Hartree-Bogoliubov(RCHB) theory with the covariant density functional PC-PK1, and compared with available experimental values. It is found that the α-decay energies deduced from the RCHB results present a similar pattern to those from available experiments. Owing to the large predicted Qα values(≥ 4 MeV), many undiscovered heavy nuclei in the proton-rich side and super-heavy nuclei may have large possibilities for α-decay. The influence of nuclear shell structure on α-decay energies is also analysed.

    HTML

Reference (156)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return