Anisotropic compact stars in Karmarkar spacetime

  • We present a new class of solutions to the Einstein field equations for an anisotropic matter distribution in which the interior space-time obeys the Karmarkar condition. The necessary and sufficient condition required for a spherically symmetric space-time to be of Class One reduces the gravitational behavior of the model to a single metric function. By assuming a physically viable form for the grr metric potential we obtain an exact solution of the Einstein field equations which is free from any singularities and satisfies all the physical criteria. We use this solution to predict the masses and radii of well-known compact objects such as Cen X-3, PSR J0348+0432, PSR B0943+10 and XTE J1739-285.
      PCAS:
  • 加载中
  • [1] K. Schwarzschild, Math. Phys., 189:(1916a)
    [2] K. Schwarzschild, Math. Phys., 424:(1916b)
    [3] R. L. Bowers, E. P. T. Liang, Astrophys. J., 188:657-665(1974)
    [4] J. D. Bekenstein, Phys. Rev. D, 4:2185-2190(1971)
    [5] S. D. Maharaj, R. Maartens, Gen. Relativ. Gravit., 21:899-905(1989)
    [6] R. Tikekar and K. Jotania, Int. J. Mod. Phys. D, 14:1037-1048(2005)
    [7] M. Esculpi et al, Gen. Relativ. Gravit., 39:633-652(2007)
    [8] P. C. Vaidya, Proc. Ind. Acad. Sci. A, 33:264-276(1951)
    [9] N. O. Santos, Mon. Not. R. Astron. Soc., 216:403-410(1985)
    [10] W. B. Bonnor, A. K. G. de Oliveira, and N. O. Santos, Phys. Rep., 181:269-326(1989)
    [11] R. Sharma and R. Tikekar, Pramana J. of Phys., 79:501-509(2012)
    [12] M. Govender et al, Astrophys. Space Sci., 361:33(2016)
    [13] P. Bhar, Astrophys. Space Sci., 356:309-318(2015)
    [14] P. Bhar, Eur. Phys. J. C, 75:123(2015)
    [15] K. N. Singh and N. Pant, Astrophys. Space Sci., 358:44(2015)
    [16] H. Andreasson, J. Phys.:Conference Series, 189:012001-0120013(2009)
    [17] P. Takisa Mafa, S. Ray, S. D. Maharaj, Astrophys. Space Sci., 350:733(2014)
    [18] S. A. Ngubelanga, S. D. Maharaj, and S. Ray, Astrophys. Space Sci., 357:74(2015)
    [19] M. Govender and S. Thirukkanesh, Astrophys. Space Sci., 358:16-22(2015)
    [20] P. Bhar and F. Rahaman, Euro. Phys. J. C, 75:41(2015)
    [21] F.S.N. Lobo, Class. Quantum Grav., 23:1525(2006)
    [22] F. Rahaman et al, Euro. Phys. J. C, 72:2071(2012)
    [23] F. Rahaman et al, Gen. Relativ. Gravit., 44:107-124(2012)
    [24] P. Bhar, Astrophys. Space Sci., 359:41(2015)
    [25] P. H. Chavanis, T. Harko, Phys. Rev. D, 86:064011(2012)
    [26] T. Harko, Phys. Rev. D, 68:064005(2003)
    [27] N. Dadhich et al, Phys. Rev. D, 88:084024(2013)
    [28] P. S. Joshi and D. Malafarina, Int. J. Mod. Phys. D, 20:2641-2729(2011)
    [29] N. Dadhich et al, Phys.Lett. B, 711:196-198(2012)
    [30] S. Hansraj et al, Eur. Phys. J. C, 75:277(2015)
    [31] S. D. Maharaj et al, Phys. Rev. D, 91:084049(2015)
    [32] N. Dadhich et al, Phys. Rev. D, 93:044072(2016)
    [33] A. Banerjee et al, Euro. Phys. J. C, 76:34(2016)
    [34] K. R. Karmarkar, Proc. Indian. Acad. Sci. A, 27:56-60(1948)
    [35] K. N. Singh and N. Pant, Astrophys. Space Sci., 361:177(2016)
    [36] K. N. Singh et al, Astrophys. Space Sci., 361:173(2016)
    [37] S. Thakadiyil and M. K. Jasim, Int. J. Theor. Phys., 52:3960-3964(2013)
    [38] S.N. Pandey and S. P. Sharma, Gene. Relativ. Gravit., 14:113-115(1981)
    [39] L. Herrera and N. O. Santos, Phys. Rep., 286:53-130(1997)
    [40] J. Ponce de Leon, Gen. Relativ. Gravit., 19:797-807(1987)
    [41] T. D. C. Ash et al, Gen. Relativ. Gravit., 307:357-364(1999)
    [42] J. Antoniadis et al, Science, 340:1233232(2013)
    [43] Y. L. Yue et al, Astrophys. J., 649:L95-L98(2006)
    [44] C. M. Zhang et al, Publ. Astron. Soc. Pac., 119:1108-1113(2007)
  • 加载中

Get Citation
Ksh. Newton Singh, Neeraj Pant and M. Govender. Anisotropic compact stars in Karmarkar spacetime[J]. Chinese Physics C, 2017, 41(1): 015103. doi: 10.1088/1674-1137/41/1/015103
Ksh. Newton Singh, Neeraj Pant and M. Govender. Anisotropic compact stars in Karmarkar spacetime[J]. Chinese Physics C, 2017, 41(1): 015103.  doi: 10.1088/1674-1137/41/1/015103 shu
Milestone
Received: 2016-06-19
Article Metric

Article Views(1761)
PDF Downloads(79)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Anisotropic compact stars in Karmarkar spacetime

    Corresponding author: Ksh. Newton Singh, ntnphy@gmail.com
    Corresponding author: Neeraj Pant, ntnphy@gmail.com
    Corresponding author: M. Govender, ntnphy@gmail.com
  • 1.  Department of Physics, National Defence Academy, Khadakwasla, Pune-411023, India
  • 2.  Department of Mathematics, National Defence Academy, Khadakwasla, Pune, 411023, India
  • 3.  Department of Mathematics, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa

Abstract: We present a new class of solutions to the Einstein field equations for an anisotropic matter distribution in which the interior space-time obeys the Karmarkar condition. The necessary and sufficient condition required for a spherically symmetric space-time to be of Class One reduces the gravitational behavior of the model to a single metric function. By assuming a physically viable form for the grr metric potential we obtain an exact solution of the Einstein field equations which is free from any singularities and satisfies all the physical criteria. We use this solution to predict the masses and radii of well-known compact objects such as Cen X-3, PSR J0348+0432, PSR B0943+10 and XTE J1739-285.

    HTML

Reference (44)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return