Neutron stars including the effects of chaotic magnetic fields and anomalous magnetic moments

  • The relativistic mean field (RMF) FSUGold model extended to include hyperons is employed to study the properties of neutron stars with strong magnetic fields. The chaotic magnetic field approximation is utilized. The effect of anomalous magnetic moments (AMMs) is also investigated. It is shown that the equation of state (EOS) of neutron star matter is stiffened by the presence of the magnetic field, which increases the maximum mass of a neutron star by around 6%. The AMMs only have a small influence on the EOS of neutron star matter, and increase the maximum mass of a neutron star by 0.02Msun. Neutral particles are spin polarized due to the presence of the AMMs.
  • [1] R. Brito, V. Cardoso, and P. Pani, Phys. Rev. D, 89:104045 (2014)
    [2] R. A. Konoplya and R. D. B. Fontana, Phys. Lett. B, 659:375-379 (2008)
    [3] C. Wu and R. L. Xu, Eur. Phys. J. C, 75:391 (2015)
    [4] R. C. Duncan and C. Thompson, Astrophys. J., 392:L9 (1992)
    [5] C. Thompson and R. C. Duncan, Mon. Not. Roy. Astron. Soc., 275:255-300 (1995)
    [6] V. V. Usov, Nature, 357:472-474 (1992)
    [7] G. Vasisht and E. V. Gotthelf, Astrophys. J., 486:L129 (1997)
    [8] P. M. Woods, C. Kouveliotou, J. van Paradijs et al, Astrophys. J., 519:L139 (1999)
    [9] C. Kouveliotou, Nature, 393:235-237 (1998)
    [10] A. Broderick, M. Prakash, and J. M. Lattimer, Astrophys. J., 537:351 (2000)
    [11] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev., 55:374-381 (1939)
    [12] C. Wu and Z. Z. Ren, Phys. Rev. C, 83:025805 (2011)
    [13] L. L. Lopes and D. Menezes, JCAP, 1508:002 (2015)
    [14] A. E. Broderick, M. Prakash, and J. M. Lattimer, Phys. Lett. B, 531:167-174 (2002)
    [15] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev. Lett., 79:2176-2179 (1997)
    [16] A. Rabhi, H. Pais, P. K. Panda et al, J. Phys. G, 36:115204 (2009)
    [17] D. P. Menezes, M. Benghi Pinto, S. S. Avancini et al, Phys. Rev. C, 80:065805 (2009)
    [18] C. Y. Ryu, K. S. Kim, and M.-K. Cheoun, Phys. Rev. C, 82:025804 (2010)
    [19] A. Rabhi, P. K. Panda, and C. Providencia, Phys. Rev. C, 84:035803 (2011)
    [20] R. Mallick and M. Sinha, Mon. Not. Roy. Astron. Soc., 414:2702-2708 (2011)
    [21] L. L. Lopes and D. P. Menezes, Braz. J. Phys., 42:428-436 (2012)
    [22] R. H. Casali, L. B. Castro, and D. P. Menezes, Phys. Rev. C, 89:015805 (2014)
    [23] D. P. Menezes, M. B. Pinto, L. B. Castro et al, Phys. Rev. C, 89:055207 (2014)
    [24] R. M. S. Schramm and S. Schramm, Phys. Rev. C, 89:045805 (2014)
    [25] Y. F. Yuan and J. L. Zhang, Astrophys. J., 525:950 (1996)
    [26] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett., 95:122501 (2005)
    [27] J. Piekarewicz, Phys. Rev. C, 76:064310 (2007)
    [28] F. J. Fattoyev and J. Piekarewicz, Phys. Rev. C, 82:025810 (2010)
    [29] N. K. Glendenning, Phys. Lett. B, 114:392-396 (1982)
    [30] G. J. Mao, A. Iwamoto, and Z. X. Li, Chin. J. Astron. Astrophys., 3:359-374 (2003)
    [31] C. Wu, W. L. Qian, Y. G. Ma et al, Int. J. Mod. Phys. E, 22:1350026 (2013)
    [32] R. L. Xu, C. Wu, and Z. Z. Ren, Int. J. Mod. Phys. E, 23:1450078 (2014)
    [33] S. Chakrabarty, Phys. Rev. D, 54:1306 (1996)
    [34] M. Strickland, V. Dexheimer, and D. P. Menezes, Phys. Rev. D, 86:125032 (2012)
    [35] M. Baldo, I. Bombaci, and G. F. Burgio, Astron. Astrophys., 328:274-282 (1997)
    [36] V. Kalogera and G. Baym, Astrophys. J., 470:L61-L64 (1996)
    [37] V. Dexheimer, R. Negreiros, and S. Schramm, Eur. Phys. J. A, 48:189 (2012)
    [38] J. M. Dong, U. Lombardo, W. Zuo et al, Nucl. Phys. A, 898:32-42 (2013)
    [39] R. O. Gomes, V. Dexheimer, and C. A. Z. Vasconcellos, Astron. Nachr., 335:666 (2014)
    [40] M. Sinha, B. Mukhopadhyay, and A. Sedrakian, Nucl. Phys. A, 898:43-58 (2013)
    [41] K. A. Maslov, E. E. Kolomeitsev, and D.N.Voskresensky, Phys. Rev. C, 92:052801 (2015)
  • [1] R. Brito, V. Cardoso, and P. Pani, Phys. Rev. D, 89:104045 (2014)
    [2] R. A. Konoplya and R. D. B. Fontana, Phys. Lett. B, 659:375-379 (2008)
    [3] C. Wu and R. L. Xu, Eur. Phys. J. C, 75:391 (2015)
    [4] R. C. Duncan and C. Thompson, Astrophys. J., 392:L9 (1992)
    [5] C. Thompson and R. C. Duncan, Mon. Not. Roy. Astron. Soc., 275:255-300 (1995)
    [6] V. V. Usov, Nature, 357:472-474 (1992)
    [7] G. Vasisht and E. V. Gotthelf, Astrophys. J., 486:L129 (1997)
    [8] P. M. Woods, C. Kouveliotou, J. van Paradijs et al, Astrophys. J., 519:L139 (1999)
    [9] C. Kouveliotou, Nature, 393:235-237 (1998)
    [10] A. Broderick, M. Prakash, and J. M. Lattimer, Astrophys. J., 537:351 (2000)
    [11] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev., 55:374-381 (1939)
    [12] C. Wu and Z. Z. Ren, Phys. Rev. C, 83:025805 (2011)
    [13] L. L. Lopes and D. Menezes, JCAP, 1508:002 (2015)
    [14] A. E. Broderick, M. Prakash, and J. M. Lattimer, Phys. Lett. B, 531:167-174 (2002)
    [15] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev. Lett., 79:2176-2179 (1997)
    [16] A. Rabhi, H. Pais, P. K. Panda et al, J. Phys. G, 36:115204 (2009)
    [17] D. P. Menezes, M. Benghi Pinto, S. S. Avancini et al, Phys. Rev. C, 80:065805 (2009)
    [18] C. Y. Ryu, K. S. Kim, and M.-K. Cheoun, Phys. Rev. C, 82:025804 (2010)
    [19] A. Rabhi, P. K. Panda, and C. Providencia, Phys. Rev. C, 84:035803 (2011)
    [20] R. Mallick and M. Sinha, Mon. Not. Roy. Astron. Soc., 414:2702-2708 (2011)
    [21] L. L. Lopes and D. P. Menezes, Braz. J. Phys., 42:428-436 (2012)
    [22] R. H. Casali, L. B. Castro, and D. P. Menezes, Phys. Rev. C, 89:015805 (2014)
    [23] D. P. Menezes, M. B. Pinto, L. B. Castro et al, Phys. Rev. C, 89:055207 (2014)
    [24] R. M. S. Schramm and S. Schramm, Phys. Rev. C, 89:045805 (2014)
    [25] Y. F. Yuan and J. L. Zhang, Astrophys. J., 525:950 (1996)
    [26] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett., 95:122501 (2005)
    [27] J. Piekarewicz, Phys. Rev. C, 76:064310 (2007)
    [28] F. J. Fattoyev and J. Piekarewicz, Phys. Rev. C, 82:025810 (2010)
    [29] N. K. Glendenning, Phys. Lett. B, 114:392-396 (1982)
    [30] G. J. Mao, A. Iwamoto, and Z. X. Li, Chin. J. Astron. Astrophys., 3:359-374 (2003)
    [31] C. Wu, W. L. Qian, Y. G. Ma et al, Int. J. Mod. Phys. E, 22:1350026 (2013)
    [32] R. L. Xu, C. Wu, and Z. Z. Ren, Int. J. Mod. Phys. E, 23:1450078 (2014)
    [33] S. Chakrabarty, Phys. Rev. D, 54:1306 (1996)
    [34] M. Strickland, V. Dexheimer, and D. P. Menezes, Phys. Rev. D, 86:125032 (2012)
    [35] M. Baldo, I. Bombaci, and G. F. Burgio, Astron. Astrophys., 328:274-282 (1997)
    [36] V. Kalogera and G. Baym, Astrophys. J., 470:L61-L64 (1996)
    [37] V. Dexheimer, R. Negreiros, and S. Schramm, Eur. Phys. J. A, 48:189 (2012)
    [38] J. M. Dong, U. Lombardo, W. Zuo et al, Nucl. Phys. A, 898:32-42 (2013)
    [39] R. O. Gomes, V. Dexheimer, and C. A. Z. Vasconcellos, Astron. Nachr., 335:666 (2014)
    [40] M. Sinha, B. Mukhopadhyay, and A. Sedrakian, Nucl. Phys. A, 898:43-58 (2013)
    [41] K. A. Maslov, E. E. Kolomeitsev, and D.N.Voskresensky, Phys. Rev. C, 92:052801 (2015)
  • 加载中

Cited by

1. Riembau, M., Son, M. One-point correlators of conserved and nonconserved charges in QCD[J]. Physical Review D, 2025, 111(1): 014004. doi: 10.1103/PhysRevD.111.014004
2. Zhang, S.-L., Wang, E., Xing, H. et al. Flavor dependence of jet quenching in heavy-ion collisions from a Bayesian analysis[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2024. doi: 10.1016/j.physletb.2024.138549
3. Zhang, S.-L., Xing, H., Zhang, B.-W. Hadron productions and jet substructures associated with Z 0/γ in Pb+Pb collisions at the LHC[J]. Science China: Physics, Mechanics and Astronomy, 2023, 66(12): 121012. doi: 10.1007/s11433-023-2251-4
4. Zhang, S.-L., Xing, H.-X., Wang, E.-K. Jet quenching effect in relativistic heavy-ion collisions | [相对论重离子碰撞中的喷注淬火效应][J]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(20): 200304. doi: 10.7498/aps.72.20230993
5. Zhang, S.-L., Liao, J., Qin, G.-Y. et al. Unraveling gluon jet quenching through J/ψ production in heavy-ion collisions[J]. Science Bulletin, 2023, 68(18): 2003-2009. doi: 10.1016/j.scib.2023.07.029
6. Wang, X.-R., Yan, B. Probing the Hgg coupling through the jet charge correlation in Higgs boson decay[J]. Physical Review D, 2023, 108(5): 056010. doi: 10.1103/PhysRevD.108.056010
7. Li, H.T., Yan, B., Yuan, C.-P. Discriminating between Higgs Production Mechanisms via Jet Charge at the LHC[J]. Physical Review Letters, 2023, 131(4): 041802. doi: 10.1103/PhysRevLett.131.041802
8. Duan, X.-P., Zhao, W., Ma, G.-L. Hadronization effects on transverse momentum dependent jet fragmentation function in small systems[J]. European Physical Journal Plus, 2023, 138(7): 669. doi: 10.1140/epjp/s13360-023-04303-8
9. Kang, Z.-B., Larkoski, A.J., Yang, J. Towards a Nonperturbative Formulation of the Jet Charge[J]. Physical Review Letters, 2023, 130(15): 151901. doi: 10.1103/PhysRevLett.130.151901
10. Duan, X.-P., Ma, G.-L. Search for jet quenching effects on the plain jet mass in Pb+Pb collisions at the LHC with a multiphase transport model[J]. European Physical Journal A, 2023, 59(3): 61. doi: 10.1140/epja/s10050-023-00970-4
11. Chen, S.-Y., Yan, J., Dai, W. et al. p T dispersion of inclusive jets in high-energy nuclear collisions*[J]. Chinese Physics C, 2022, 46(10): 104102. doi: 10.1088/1674-1137/ac79aa
12. Abdul Khalek, R., Accardi, A., Adam, J. et al. Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report[J]. Nuclear Physics A, 2022. doi: 10.1016/j.nuclphysa.2022.122447
13. Zhang, S.-L., Wang, X.-N., Zhang, B.-W. Quenching of jets tagged with W bosons in high-energy nuclear collisions[J]. Physical Review C, 2022, 105(5): 054902. doi: 10.1103/PhysRevC.105.054902
14. Zhang, S.-L., Yang, M.-Q., Zhang, B.-W. Parton splitting scales of reclustered large-radius jets in high-energy nuclear collisions[J]. European Physical Journal C, 2022, 82(5): 414. doi: 10.1140/epjc/s10052-022-10340-x
15. Li, H., Vitev, I. Jet charge modification in dense QCD matter[J]. Proceedings of Science, 2021.
16. Li, H.T., Vitev, I. Nuclear Matter Effects on Jet Production at Electron-Ion Colliders[J]. Physical Review Letters, 2021, 126(25): 252001. doi: 10.1103/PhysRevLett.126.252001
17. Kang, Z.-B., Liu, X., Mantry, S. et al. Dynamic jet charge[J]. Physical Review D, 2021, 103(7): 074028. doi: 10.1103/PhysRevD.103.074028
18. Yan, J., Chen, S.-Y., Dai, W. et al. Medium modifications of girth distributions for inclusive jets and Z0+jets in relativistic heavy-ion collisions at the LHC[J]. Chinese Physics C, 2021, 45(2): 024102. doi: 10.1088/1674-1137/abca2b
19. Trzeciak, B.. Quenching of heavy and light flavour jets: experimental overview[J]. Nuclear Physics A, 2021. doi: 10.1016/j.nuclphysa.2020.121800
20. Kang, Z.-B., Liu, X., Mantry, S. et al. Jet Charge: A Flavor Prism for Spin Asymmetries at the Electron-Ion Collider[J]. Physical Review Letters, 2020, 125(24): 242003. doi: 10.1103/PhysRevLett.125.242003
21. Dai, W., Wang, S., Zhang, S.-L. et al. Transverse momentum balance and angular distribution of bb¯ dijets in Pb + Pb collisions[J]. Chinese Physics C, 2020, 44(10): 104105. doi: 10.1088/1674-1137/abab8f
22. Chen, S.-Y., Dai, W., Zhang, S.-L. et al. The global geometrical property of jet events in high-energy nuclear collisions[J]. European Physical Journal C, 2020, 80(9): 865. doi: 10.1140/epjc/s10052-020-08452-3
23. Sirunyan, A.M., Tumasyan, A., Adam, W. et al. Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV[J]. Journal of High Energy Physics, 2020, 2020(7): 115. doi: 10.1007/JHEP07(2020)115
24. Li, H.T., Vitev, I. Jet charge modification in finite QCD matter[J]. Physical Review D, 2020, 101(7): 076020. doi: 10.1103/PhysRevD.101.076020
Get Citation
Fei Wu, Chen Wu and Zhong-Zhou Ren. Neutron stars including the effects of chaotic magnetic fields and anomalous magnetic moments[J]. Chinese Physics C, 2017, 41(4): 045102. doi: 10.1088/1674-1137/41/4/045102
Fei Wu, Chen Wu and Zhong-Zhou Ren. Neutron stars including the effects of chaotic magnetic fields and anomalous magnetic moments[J]. Chinese Physics C, 2017, 41(4): 045102.  doi: 10.1088/1674-1137/41/4/045102 shu
Milestone
Received: 2016-09-25
Revised: 2016-11-09
Fund

    Supported by National Natural Science Foundation of China (11535004, 11375086, 11120101005, 11175085, 11235001), 973 National Major State Basic Research and Development of China (2013CB834400), and Science and Technology Development Fund of Macau (068/2011/A)

Article Metric

Article Views(1764)
PDF Downloads(34)
Cited by(24)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Neutron stars including the effects of chaotic magnetic fields and anomalous magnetic moments

    Corresponding author: Fei Wu,
    Corresponding author: Chen Wu,
    Corresponding author: Zhong-Zhou Ren,
  • 1.  Physics Department, Nanjing University, Nanjing 210008, China
  • 2.  Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
  • 3. Physics Department, Nanjing University, Nanjing 210008, China
  • 4. Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000, China
  • 5. Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Supported by National Natural Science Foundation of China (11535004, 11375086, 11120101005, 11175085, 11235001), 973 National Major State Basic Research and Development of China (2013CB834400), and Science and Technology Development Fund of Macau (068/2011/A)

Abstract: The relativistic mean field (RMF) FSUGold model extended to include hyperons is employed to study the properties of neutron stars with strong magnetic fields. The chaotic magnetic field approximation is utilized. The effect of anomalous magnetic moments (AMMs) is also investigated. It is shown that the equation of state (EOS) of neutron star matter is stiffened by the presence of the magnetic field, which increases the maximum mass of a neutron star by around 6%. The AMMs only have a small influence on the EOS of neutron star matter, and increase the maximum mass of a neutron star by 0.02Msun. Neutral particles are spin polarized due to the presence of the AMMs.

    HTML

Reference (41)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return