×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Analysis of the strong coupling form factors of bNB andcND in QCD sum rules

  • In this article, we study the strong interaction of the vertices bNB and cND using the three-point QCD sum rules under two different Dirac structures. Considering the contributions of the vacuum condensates up to dimension 5 in the operation product expansion, the form factors of these vertices are calculated. Then, we fit the form factors into analytical functions and extrapolate them into time-like regions, which gives the coupling constants. Our analysis indicates that the coupling constants for these two vertices are GbNB=0.43±0.01 GeV-1 and GcND=3.76±0.05 GeV-1.
      PCAS:
  • 加载中
  • [1] B. Aubert et al, Phys. Rev. Lett, 97:232001 (2006)
    [2] K. Nakamura et al, J. Phys. G, 37:075021 (2010)
    [3] T. Lesiak, hep-ex/0612042.
    [4] J. L. Rosner, J. Phys. G, 34:S127 (2007)
    [5] M. Paulini, arXiv:0906.0808.
    [6] E. Klempt and J. M. Richard, Rev. Mod. Phys., 82:1095 (2010)
    [7] M. Mattson et al, Phys. Rev. Lett., 89:112001 (2002)
    [8] A. Ocherashvili et al, Phys. Lett. B, 628:18 (2005)
    [9] A. Faessler, Th. Gutsche, M. A. Ivanov, J. G. Kmrner, V. E. Lyubovitskij, D. Nicmorus, and K. Pumsa-ard, Phys. Rev. D, 73:094013 (2006)
    [10] B. Patel, A. K. Rai, and P. C. Vinodkumar, J. Phys. G, 35:065001 (2008); J. Phys. Conf. Ser., 110:122010 (2008)
    [11] Xiang Liu, H. X. Chen, Y. R. Liu, A. Hosaka, and S. L. Zhu, Phys. Rev. D, 77:014031 (2008)
    [12] Chun Mu, Xiao-Wang, Xiao-Lin Chen et al, Chin. Phys. C, 38:113101 (2014)
    [13] J. R. Zhang, M. Q. Huang, Phys. Rev. D, 78:094015 (2008); Phys. Lett. B, 674:28 (2009); Chin. Phys. C, 33:1385 (2009)
    [14] M. Karliner, H. J. Lipkin, Phys. Lett. B, 660:539 (2008)
    [15] M. Karliner, J. L. Rosner, Phys. Rev. D, 90:094007 (2014)
    [16] F. S. Navarra, M. Nielsen, K. Tsushima, Phys. Lett. B, 606:335 (2005)
    [17] A. Khodjamirian, Th. Mannel, N. Offen, Y. M. Wang, Phys. Rev. D, 83:094031 (2011)
    [18] T. M. Aliev, K. Azizi, M. Savci, J. Phys. G, 40:065003 (2013); 41:065003 (2014); J. Phys.:Conf. Ser., 556:012016 (2014)
    [19] K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D, 90:114011 (2014)
    [20] K. Azizi, Y. Sarac, H. Sundu, Nucl. Phys. A, 943:159 (2015)
    [21] T. M. Aliev, K. Azizi, M. Savci, Phys. Lett. B, 696:220 (2011); Nucl. Phys. A, 852:141 (2011); Eur. Phys. J. C, 71:1675 (2011); Phys. Rev. D, 83:096007 (2011); Nucl. Phys. A, 870:58 (2011); Eur. Phys. J. A, 47:125 (2011)
    [22] Z. G. Wang, Phys. Rev. C, 85:045204 (2012); Eur. Phys. J. C, 71:1816 (2011); Eur. Phys. J. C, 73:2533 (2013)
    [23] Z. G. Wang, T. Huang, Phys. Rev. C, 84:048201 (2011)
    [24] A. Kumar, Adv. High Energy Phys., 549726 (2014)
    [25] A. Hayashigaki, Phys. Lett. B, 487:96 (2000)
    [26] F. S. Navarra, M. Nielsen, Phys. Lett. B, 443:285 (1998)
    [27] A. Khodjamirian, Ch. Klein, and Th. Mannel et al, J. High Energy Phys., 09:106 (2011)
    [28] M. E. Bracco, M. Chiapparini, F. S. Navarra, M. Nielsen, Phys. Lett. B, 659:559 (2008)
    [29] M. E. Bracco, M. Nielsen, Phys. Rev. D, 82:034012 (2010)
    [30] Z. G. Wang, Phys. Rev. D, 89:034017 (2014)
    [31] A. Khodjamirian, Th Mannel, N. Offen, Y. M. Wang, Phys. Rev. D, 83:094031 (2011)
    [32] A. Khodjamirian, Ch. Klein, Th. Mannel, Y. M. Wang, arXiv:1108.2971[hep-ph]
    [33] T. M. Aliev, M. Savci, arXiv:1308.3142[hep-ph]
    [34] T. M. Aliev, M. Savci, arXiv:1409.5250[hep-ph]
    [35] T. Doi, Y. Kondo, M. Oka, Phys. Rep., 398:253 (2004)
    [36] R. Altmeyer, M. Goeckeler, R. Horsley et al, Nucl. Phys. Proc. Suppl., 34:373 (1994)
    [37] Z. G. Wang, S. L. Wan, Phys. Rev. D, 74:014017 (2006)
    [38] A. Cerqueira Jr, B. O. Rodrigues, M. E. Bracco, Nucl. Phys. A, 874:130 (2012)
    [39] B. O. Rodrigues, M. E. Bracco, M. Chiapparini, Nucl. Phys. A, 929:143 (2014)
    [40] E. Yazici et al, Eur. Phys. J. Plus., 128(10):113 (2013)
    [41] R. Khosravi, M. Janbazi, Phys. Rev. D, 87:016003 (2013)
    [42] R. Khosravi, M. Janbazi, Phys. Rev. D, 89:016001 (2014)
    [43] L. J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep., 127:1 (1985)
    [44] P. Pascual, R. Tarrach, Lect. Notes Phys., 194:1 (1984)
    [45] Z. G. Wang, Z. Y. Di, Eur. Phys. J. A, 50:143 (2014)
    [46] L. J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep., 127:1 (1985)
    [47] P. Pascual, R. Tarrach, Lect. Notes Phys., 194:1 (1984)
    [48] B. L. Ioffe, Nucl. Phys. B, 188:317 (1981)
    [49] P. Colangelo, A. Khodjamirian, At the frontier of particle physics, in Handbook of QCD, vol. 3. (World Scientific, Singapore, 2000), p.1495. arXiv:hep-ph/0010175
    [50] K. Azizi, Y. Sarac, and H. Sundu, Eur. Phys. J. A, 52:114 (2016)
    [51] Z. G. Wang, Z. Y. Di, Eur. Phys. J. A, 50:143 (2014)
    [52] A. Khodjamirian, B and D Meson Decay Constant in QCD, in Proceeding of 3rd Belle Analysis School, 22, 2010 (KEK, Tsukuba, Japan, 2010)
    [53] B. I. Eisenstein et al (CLEO Collab.), Phys. Rev. D, 78:052003 (2008)
    [54] K. Azizi, N. Er, Eur. Phys. J. C, 74:2904 (2014)
    [55] K. Azizi, M. Bayar, A. Ozpineci, Phys. Rev. D, 79:056002 (2009)
    [56] K. A. Olive et al (Particle Data Group), Chin. Phys. C, 38:090001 (2014)
    [57] B. L. Ioffe, Prog. Part. Nucl. Phys., 56:232 (2006)
    [58] V. M. Belyaev, B. L. Ioffe, Sov. Phys. JETP, 57:716 (1983); Phys. Lett. B, 287:176 (1992)
    [59] Guo-Liang Yu, Zhi-Gang Wang, and Zhen-Yu Li, Eur. Phys. J. C, 75:243 (2015)
  • 加载中

Get Citation
Guo-Liang Yu, Zhi-Gang Wang and Zhen-Yu Li. Analysis of the strong coupling form factors of bNB andcND in QCD sum rules[J]. Chinese Physics C, 2017, 41(8): 083104. doi: 10.1088/1674-1137/41/8/083104
Guo-Liang Yu, Zhi-Gang Wang and Zhen-Yu Li. Analysis of the strong coupling form factors of bNB andcND in QCD sum rules[J]. Chinese Physics C, 2017, 41(8): 083104.  doi: 10.1088/1674-1137/41/8/083104 shu
Milestone
Received: 2017-03-14
Fund

    Supported by Fundamental Research Funds for the Central Universities (2016MS133)

Article Metric

Article Views(1522)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Analysis of the strong coupling form factors of bNB andcND in QCD sum rules

    Corresponding author: Guo-Liang Yu,
    Corresponding author: Zhi-Gang Wang,
  • 1.  Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
  • 2.  School of Physics and Electronic Science, Guizhou Normal College, Guiyang 550018, China
Fund Project:  Supported by Fundamental Research Funds for the Central Universities (2016MS133)

Abstract: In this article, we study the strong interaction of the vertices bNB and cND using the three-point QCD sum rules under two different Dirac structures. Considering the contributions of the vacuum condensates up to dimension 5 in the operation product expansion, the form factors of these vertices are calculated. Then, we fit the form factors into analytical functions and extrapolate them into time-like regions, which gives the coupling constants. Our analysis indicates that the coupling constants for these two vertices are GbNB=0.43±0.01 GeV-1 and GcND=3.76±0.05 GeV-1.

    HTML

Reference (59)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return