Shape evolution of 72, 74Kr with temperature in covariant density functional theory

  • The rich phenomena of deformations in neutron-deficient krypton isotopes, such as shape evolution with neutron number and shape coexistence, have attracted the interest of nuclear physicists for decades. It is interesting to study such shape phenomena using a novel way, e.g. by thermally exciting the nucleus. In this work, we develop the finite temperature covariant density functional theory for axially deformed nuclei with the treatment of pairing correlations by the BCS approach, and apply this approach for the study of shape evolution in 72,74Kr with increasing temperature. For 72Kr, with temperature increasing, the nucleus firstly experiences a relatively quick weakening in oblate deformation at temperature T~0.9 MeV, and then changes from oblate to spherical at T~2.1 MeV. For 74Kr, its global minimum is at quadrupole deformation β2~-0.14 and abruptly changes to spherical at T~1.7 MeV. The proton pairing transition occurs at critical temperature 0.6 MeV following the rule Tc=0.6 p (0), where p(0) is the proton pairing gap at zero temperature. The signatures of the above pairing transition and shape changes can be found in the specific heat curve. The single-particle level evolutions with temperature are presented.
      PCAS:
  • 加载中
  • [1] R. B. Piercey et al, Phys. Rev. Lett., 47:1514(1981)
    [2] R. B. Piercey et al, Phys. Rev. C, 25:1941(1982)
    [3] G. de Angelis et al, Phys. Lett. B, 415:217(1997)
    [4] C. Chandler et al, Phys. Rev. C, 56:R2924(1997)
    [5] A. Grgen et al, Eur. Phys. J. A, 26:153(2005)
    [6] H. Iwasaki et al, Phys. Rev. Lett., 112:142502(2014)
    [7] F. Becker et al, Eur. Phys. J. A, 4:103(1999)
    [8] E. Bouchez et al, Phys. Rev. Lett., 90:082502(2003)
    [9] E. Clment et al, Phys. Rev. C, 75:054313(2007)
    [10] J. A. Briz et al, Phys. Rev. C, 92:054326(2015)
    [11] A. Petrovici, A. Faessler, and T. H. Kppel. Z. Phys. A, 314:227(1983)
    [12] Y. Fu, H. Mei, J. Xiang, Z.P. Li, J.M. Yao, and J. Meng, Phys. Rev. C, 87:054305(2013)
    [13] M. Yamagami, K. Matsuyanagi, and M. Matsuo, Nucl. Phys. A, 693:579(2001)
    [14] A. Petrovici, K. W. Schmid, and A. Faessler, Nucl. Phys. A, 665:333(2000)
    [15] K. Langanke, D. J. Dean, and W. Nazarewicz, Nucl. Phys. A, 728:109(2003)
    [16] M. Bender, P. Bonche, and P. H. Heenen, Phys. Rev. C, 74:024312(2006)
    [17] T. R. Rodrguez, Phys. Rev. C, 90:034306(2014)
    [18] M. Girod, J-P. Delaroche, A. Grgen A, and A. Obertelli, Phys. Lett. B, 676:39(2009)
    [19] K. Sato and N. Hinohara, Nucl. Phys. A, 849:53(2011)
    [20] Z. J. Bai, X. M. Fu, C. F. Jiao, and F. R. Xu, Chin. Phys. C, 39(9):094101(2015)
    [21] A. P. Zuker, Phys. Rev. C, 92:024320(2015)
    [22] H. Schatz, Int. J. Mass Spectrom., 251:293(2006)
    [23] J. L. Egido, L. M. Robledo, and V. Martin, Phys. Rev. Lett., 85:26(2000)
    [24] C. Bloch and C. Dedominicis, Nucl. Phys., 7(5):459(1958)
    [25] G. Sauer, H. Chandra, U. Mosel, Nucl. Phys. A, 264:221(1976)
    [26] H. C. Lee, and S. Das Gupta, Phys. Rev. C, 19(6):2369(1979)
    [27] M. Brack and P. Quentin, Phys. Lett. B, 52:159(1974); Phys. Scr. A, 10:163(1974)
    [28] P. Quentin and H. Flocard, Annu. Rev. Nucl. Part. Sci., 28:523(1978)
    [29] G. D. Yen, and H. G. Miller, Phys. Rev. C, 50:807(1994)
    [30] A. L. Goodman, Nucl. Phys. A, 352:30(1981)
    [31] A. L. Goodman, Phys. Rev. C, 34:1942(1986)
    [32] V. Martin, J. L. Egido, and L. M. Robledo, Phys. Rev. C, 68:034327(2003)
    [33] E. Yksel, E. Khan, K. Bozkurt, and G. Col, Eur. Phys. J. A, 50:160(2014)
    [34] P. Ring, Prog. Part. Nucl. Phys., 37:193(1996)
    [35] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,Phys. Rep., 409:101(2005)
    [36] J. Meng, H. Toki, S.-G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57:470(2006)
    [37] J. Meng, Int. Rev. Nucl. Phys., 10:1(2016)
    [38] Y. F. Niu, Z.M. Niu, N. Paar, D. Vretenar, G.H. Wang, J.S. Bai, and J. Meng, Phys. Rev. C, 88:034308(2013)
    [39] J. J. Li, J. Margueron, W. H. Long, and N. Van Giai, Phys. Rev. C, 92:014302(2015)
    [40] B. K. Agrawal, Tapas Sil, J. N. De, and S. K. Samaddar, Phys. Rev. C, 62:044307(2000)
    [41] B. K. Agrawal, Tapas Sil, S. K. Samaddar, and J. N. De, Phys. Rev. C, 63:024002(2001)
    [42] P. Bonche, S. Levit, and D. Vautherin, Nucl. Phys. A, 427:278(1984); 436:265(1985)
    [43] R. Lisboa, M. Malheiro and B. V. Carlson, Phys. Rev. C, 93:024321(2016)
    [44] S. Levit and Y. Alhassid, Nucl. Phys. A, 413:439(1984)
    [45] Y. Alhassid and J. Zingman, Phys. Rev. C, 30:684(1984)
    [46] R. Rossignoli and P. Ring, Ann. Phys., 235:350(1994)
    [47] G. H. Lang, C.W. Johnson, S. E. Koonin, and W. E. Ormand, Phys. Rev. C, 48:1518(1993)
    [48] N. D. Dang, P. Ring, and R. Rossignoli, Phys. Rev. C, 47:606(1993)
    [49] N. D. Dang, Phys. Rev. C, 76:064320(2007)
    [50] D. Gambacurta, D. Lacroix, and N. Sandulescu, Phys. Rev. C, 88:034324(2013)
    [51] L. Liu, Z. H. Zhang, and P. W. Zhao, Phys. Rev. C, 92:044304(2015)
    [52] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C, 82:054319(2010)
    [53] A. Gade et al, Phys. Rev. Lett., 95:022502(2005)
    [54] S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables, 78:1(2001)
  • 加载中

Get Citation
Wei Zhang and Yi-Fei Niu. Shape evolution of 72, 74Kr with temperature in covariant density functional theory[J]. Chinese Physics C, 2017, 41(9): 094102. doi: 10.1088/1674-1137/41/9/094102
Wei Zhang and Yi-Fei Niu. Shape evolution of 72, 74Kr with temperature in covariant density functional theory[J]. Chinese Physics C, 2017, 41(9): 094102.  doi: 10.1088/1674-1137/41/9/094102 shu
Milestone
Received: 2017-03-23
Fund

    Supported by National Natural Science Foundation of China (11105042, 11305161, 11505157), Open Fund of Key Laboratory of Time and Frequency Primary Standards, CAS, and Support from Henan Administration of Foreign Experts Affairs

Article Metric

Article Views(1629)
PDF Downloads(49)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Shape evolution of 72, 74Kr with temperature in covariant density functional theory

    Corresponding author: Yi-Fei Niu,
  • 1. Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
  • 2. Key Laboratory of Precision Navigation and Technology, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
  • 3.  ELI-NP, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
Fund Project:  Supported by National Natural Science Foundation of China (11105042, 11305161, 11505157), Open Fund of Key Laboratory of Time and Frequency Primary Standards, CAS, and Support from Henan Administration of Foreign Experts Affairs

Abstract: The rich phenomena of deformations in neutron-deficient krypton isotopes, such as shape evolution with neutron number and shape coexistence, have attracted the interest of nuclear physicists for decades. It is interesting to study such shape phenomena using a novel way, e.g. by thermally exciting the nucleus. In this work, we develop the finite temperature covariant density functional theory for axially deformed nuclei with the treatment of pairing correlations by the BCS approach, and apply this approach for the study of shape evolution in 72,74Kr with increasing temperature. For 72Kr, with temperature increasing, the nucleus firstly experiences a relatively quick weakening in oblate deformation at temperature T~0.9 MeV, and then changes from oblate to spherical at T~2.1 MeV. For 74Kr, its global minimum is at quadrupole deformation β2~-0.14 and abruptly changes to spherical at T~1.7 MeV. The proton pairing transition occurs at critical temperature 0.6 MeV following the rule Tc=0.6 p (0), where p(0) is the proton pairing gap at zero temperature. The signatures of the above pairing transition and shape changes can be found in the specific heat curve. The single-particle level evolutions with temperature are presented.

    HTML

Reference (54)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return