×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Fixed point and anomaly mediation in partial N=2 supersymmetric standard models

  • Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N=2 supersymmetric (SUSY) extension of the standard model which has an N=2 SUSY sector and an N=1 SUSY sector. We point out that below the scale of the partial breaking of N=2 to N=1, the ratio of Yukawa to gauge couplings embedded in the original N=2 gauge interaction in the N=2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N=2 sector are suppressed due to the N=2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N=2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N=2 vector multiplet of U(1)Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N=2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N=2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.
      PCAS:
  • 加载中
  • [1] J. Polchinski, String Theory, (Cambridge, UK:Univ. Pr. (1998))
    [2] P. Fayet, Nucl. Phys. B, 113:135 (1976); R. Grimm, M. Sohnius, and J. Wess, Nucl. Phys. B, 133:275 (1978)
    [3] N. Arkani-Hamed, T. Gregoire, and J. G. Wacker, JHEP, 0203:055 (2002)
    [4] F. del Aguila, M. Dugan, B. Grinstein, L. J. Hall, G. G. Ross, and P. C. West, Nucl. Phys. B, 250:225 (1985); N. Polonsky and S. f. Su, Phys. Rev. D, 63:035007 (2001); P. J. Fox, A. E. Nelson, and N. Weiner, JHEP, 0208:035 (2002); I. Antoniadis, A. Delgado, K. Benakli, M. Quiros, and M. Tuckmantel, Phys. Lett. B, 634:302 (2006); M. M. Nojiri and M. Takeuchi, Phys. Rev. D, 76:015009 (2007); I. Antoniadis, K. Benakli, A. Delgado, and M. Quiros, Adv. Stud. Theor. Phys., 2:645 (2008); S. Y. Choi, M. Drees, A. Freitas, and P. M. Zerwas, Phys. Rev. D, 78:095007 (2008); M. M. Nojiri et al, arXiv:0802.3672[hep-ph]; G. Belanger, K. Benakli, M. Goodsell, C. Moura, and A. Pukhov, JCAP, 0908:027 (2009); K. Benakli and M. D. Goodsell, Nucl. Phys. B, 840:1 (2010); K. Benakli, M. D. Goodsell, and A. K. Maier, Nucl. Phys. B, 851:445 (2011); M. Heikinheimo, M. Kellerstein, and V. Sanz, JHEP, 1204:043 (2012); K. Benakli, M. D. Goodsell, and F. Staub, JHEP, 1306:073 (2013); E. Dudas, M. Goodsell, L. Heurtier, and P. Tziveloglou, Nucl. Phys. B, 884:632 (2014); K. Benakli, M. Goodsell, F. Staub, and W. Porod, Phys. Rev. D, 90 (4):045017 (2014); M. D. Goodsell, M. E. Krauss, T. Mller, W. Porod, and F. Staub, JHEP, 1510:132 (2015)
    [5] Y. Shimizu and W. Yin, Phys. Lett. B, 754:118 (2016)
    [6] L. Randall and R. Sundrum, Nucl. Phys. B, 557:79 (1999)
    [7] G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi, JHEP, 9812:027 (1998)
    [8] A. Pomarol and R. Rattazzi, JHEP, 9905:013 (1999)
    [9] W. Yin and N. Yokozaki, Phys. Lett. B, 762:72 (2016); T. T. Yanagida, W. Yin, and N. Yokozaki, JHEP, 1609:086 (2016)
    [10] Z. Chacko, M. A. Luty, I. Maksymyk, and E. Ponton, JHEP, 0004:001 (2000)
    [11] Y. Okada, M. Yamaguchi, and T. Yanagida, Prog. Theor. Phys., 85:1-6 (1991); J. R. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett. B, 257:83-91 (1991); H. E. Haber and R. Hempfling, Phys. Rev. Lett. B, 66:1815-1818 (1991)
    [12] G. W. Bennett et al (Muon g-2 Collaboration), Phys. Rev. D, 73:072003 (2006); B. L. Roberts, Chin. Phys. C, 34:741 (2010)
    [13] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, and T. Teubner, J. Phys. G, 38:085003 (2011)
    [14] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C, 71:1515 (2011); Erratum:[Eur. Phys. J. C 72, 1874 (2012)]
    [15] M. Ibe, S. Matsumoto, T. T. Yanagida, and N. Yokozaki, JHEP, 1303:078 (2013); M. Ibe, T. T. Yanagida, and N. Yokozaki, JHEP, 1308:067 (2013); K. Harigaya, T. T. Yanagida, and N. Yokozaki, Phys. Rev. D, 91 (7):075010 (2015); M. Nishida and K. Yoshioka, arXiv:1605.06675[hep-ph]; M. Yamaguchi and W. Yin, arXiv:1606.04953[hep-ph]
    [16] M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D, 78:065011 (2008)
    [17] M. Fukugita and T. Yanagida, Phys. Lett. B, 174:45 (1986)
    [18] J. Bagger and A. Galperin, Phys. Lett. B, 336:25 (1994)
    [19] I. Antoniadis, H. Partouche, and T. R. Taylor, Phys. Lett. B, 372:83 (1996)
    [20] G. Giudice and R. Rattazzi, Phys. Rept., 322:419 (1999)
    [21] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40 (10):100001 (2016)
    [22] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett., 65:964 (1990)
    [23] S. P. Martin and M. T. Vaughn, Phys. Rev. D, 50:2282 (1994)[Erratum:Phys. Rev. D, 78:039903 (2008)]
    [24] I. Jack and D. Jones, Phys. Lett. B, 333:3-4, 372-379 (1994); Y. Yamada, Phys. Rev. D, 50:3537-3545 (1994)
    [25] Y. Kawamura, Prog. Theor. Phys., 105:999 (2001); L. J. Hall and Y. Nomura, Phys. Rev. D, 64:055003 (2001)
    [26] J. Bagger, E. Poppitz, and L. Randall, Nucl. Phys. B, 455:59 (1995); H. P. Nilles and N. Polonsky, Phys. Lett. B, 412:69 (1997)
    [27] G. Aad et al (ATLAS Collaboration), JHEP, 1405:071 (2014)
    [28] G. Aad et al (ATLAS Collaboration), JHEP, 1501:068 (2015); S. Chatrchyan et al (CMS Collaboration), JHEP, 1307:122 (2013)
    [29] J. L. Lopez, D. V. Nanopoulos, and X. Wang, Phys. Rev. D, 49:366-372 (1994); U. Chattopadhyay and P. Nath, Phys. Rev. D, 53:1648 (1996); T. Moroi, Phys. Rev. D, 53:6565-6575 (1996)
    [30] S. Marchetti, S. Mertens, U. Nierste, and D. Stockinger, Phys. Rev. D, 79:013010 (2009)
    [31] S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun., 124:76 (2000); S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C, 9:343 (1999); G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Eur. Phys. J. C, 28:133 (2003); M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, JHEP, 0702:047 (2007); T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, Phys. Rev. Lett., 112 (14):141801 (2014)
    [32] G. D. Coughlan, W. Fischler, E. W. Kolb et al, Phys. Lett. B, 131:59 (1983); J. R. Ellis, D. V. Nanopoulos, and M. Quiros, Phys. Lett. B, 174:176 (1986); A. S. Goncharov, A. D. Linde, and M. I. Vysotsky, Phys. Lett. B, 147:279 (1984); T. Banks, D. B. Kaplan, and A. E. Nelson, Phys. Rev. D, 49:779 (1994); B. de Carlos, J. A. Casas, F. Quevedo, and E. Roulet, Phys. Lett. B, 318:447 (1993)
    [33] M. Endo, K. Hamaguchi, T. Kitahara, and T. Yoshinaga, JHEP, 1311:013 (2013)
    [34] The ATLAS collaboration (ATLAS Collaboration), ATLAS-CONF-2016-057, https://twiki.cern.ch/twiki/bin/view/Atlas-Public/
    [35] M. Ibe and T. T. Yanagida, Phys. Lett. B, 709:374 (2012); M. Ibe, S. Matsumoto, and T. T. Yanagida, Phys. Rev. D, 85:095011 (2012)
    [36] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A20 (2016)
    [37] T. Moroi, H. Murayama, and M. Yamaguchi, Phys. Lett. B, 303:289 (1993)
    [38] J. Heisig and J. Kersten, Phys. Rev. D, 84:115009 (2011); J. Heisig and J. Kersten, Phys. Rev. D, 86:055020 (2012); J. L. Feng, S. Iwamoto, Y. Shadmi, and S. Tarem, JHEP, 1512:166 (2015)
  • 加载中

Get Citation
Wen Yin. Fixed point and anomaly mediation in partial N=2 supersymmetric standard models[J]. Chinese Physics C, 2018, 42(1): 013104. doi: 10.1088/1674-1137/42/1/013104
Wen Yin. Fixed point and anomaly mediation in partial N=2 supersymmetric standard models[J]. Chinese Physics C, 2018, 42(1): 013104.  doi: 10.1088/1674-1137/42/1/013104 shu
Milestone
Received: 2017-09-04
Article Metric

Article Views(1720)
PDF Downloads(23)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Fixed point and anomaly mediation in partial N=2 supersymmetric standard models

    Corresponding author: Wen Yin,
  • 1. Department of Physics, Tohoku University, Sendai 980-8578, Japan
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract: Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N=2 supersymmetric (SUSY) extension of the standard model which has an N=2 SUSY sector and an N=1 SUSY sector. We point out that below the scale of the partial breaking of N=2 to N=1, the ratio of Yukawa to gauge couplings embedded in the original N=2 gauge interaction in the N=2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N=2 sector are suppressed due to the N=2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N=2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N=2 vector multiplet of U(1)Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N=2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N=2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.

    HTML

Reference (38)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return