Flavor SU(3) topological diagram and irreducible representation amplitudes for heavy meson charmless hadronic decays: mismatch and equivalence

  • Flavor SU(3) analysis of B meson charmless hadronic two light pseudoscalar decays can be formulated in two different ways. One is to construct the SU(3) irreducible representation amplitude (IRA) according to effective Hamiltonian transformation properties, and the other is to draw the topological diagrams (TDA). We first point out that previous analyses of TDA and IRA approaches do not match in several aspects, in particular a few SU(3) independent amplitudes have been overlooked in the TDA approach. This has caused confusions in the past and sometimes resulted in incorrect interpretation of data. We then demonstrate that only if these amplitudes are included, a consistent and unified picture can be obtained. With the new TDA amplitudes, all charmless hadronic decays of heavy meson must have nonzero direct CP symmetries as already predicted by the IRA approach. In addition to their notable impact on CP asymmetry, the new amplitudes are also important to extract new physics information.
      PCAS:
  • 加载中
  • [1] Y. Amhis et al (HFLAV Collaboration), Eur. Phys. J. C, 77(12):895 (2017), doi:10.1140/epjc/s10052-017-5058-4, arXiv:1612.07233[hep-ex]
    [2] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40(10):100001 (2016), doi:10.1088/1674-1137/40/10/100001
    [3] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Nucl. Phys. B, 606:245 (2001), doi:10.1016/S0550-3213(01)00251-6,[hep-ph/0104110]
    [4] M. Beneke and M. Neubert, Nucl. Phys. B, 675:333 (2003), doi:10.1016/j.nuclphysb.2003.09.026,[hep-ph/0308039]
    [5] Y. Y. Keum, H. n. Li, and A. I. Sanda, Phys. Lett. B, 504:6 (2001), doi:10.1016/S0370-2693(01)00247-7,[hep-ph/0004004]
    [6] Y. Y. Keum, H. N. Li, and A. I. Sanda, Phys. Rev. D, 63:054008 (2001), doi:10.1103/PhysRevD.63.054008,[hep-ph/0004173]
    [7] C. D. Lu, K. Ukai, and M. Z. Yang, Phys. Rev. D, 63:074009 (2001), doi:10.1103/PhysRevD.63.074009,[hep-ph/0004213]
    [8] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys. Rev. D, 63:114020 (2001), doi:10.1103/PhysRevD.63.114020,[hep-ph/0011336]
    [9] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. Lett., 87:201806 (2001), doi:10.1103/PhysRevLett.87.201806,[hep-ph/0107002]
    [10] D. Zeppenfeld, Z. Phys. C, 8:77 (1981), doi:10.1007/BF01429835
    [11] M. J. Savage and M. B. Wise, Phys. Rev. D, 39:3346 (1989); Phys. Rev. D, 40:3127 (1989), doi:10.1103/PhysRevD.39.3346, 10.1103/PhysRevD.40.3127
    [12] N. G. Deshpande and X. G. He, Phys. Rev. Lett., 75:1703 (1995), doi:10.1103/PhysRevLett.75.1703,[hep-ph/9412393]
    [13] X. G. He, Eur. Phys. J. C, 9:443 (1999), doi:10.1007/s100529900064,[hep-ph/9810397]
    [14] X. G. He, Y. K. Hsiao, J. Q. Shi, Y. L. Wu, and Y. F. Zhou, Phys. Rev. D, 64:034002 (2001), doi:10.1103/PhysRevD.64.034002,[hep-ph/0011337]
    [15] Y. K. Hsiao, C. F. Chang, and X. G. He, Phys. Rev. D, 93(11):114002 (2016), doi:10.1103/PhysRevD.93.114002, arXiv:1512.09223[hep-ph]
    [16] L. L. Chau and H. Y. Cheng, Phys. Rev. Lett., 56:1655 (1986), doi:10.1103/PhysRevLett.56.1655
    [17] L. L. Chau and H. Y. Cheng, Phys. Rev. D, 36:137 (1987); Addendum:[Phys. Rev. D, 39:2788 (1989)], doi:10.1103/PhysRevD.39.2788, 10.1103/PhysRevD.36.137
    [18] L. L. Chau, H. Y. Cheng, W. K. Sze, H. Yao, and B. Tseng, Phys. Rev. D, 43:2176 (1991); Erratum:[Phys. Rev. D, 58:019902 (1998)], doi:10.1103/PhysRevD.43.2176, 10.1103/PhysRevD.58.019902
    [19] M. Gronau, O. F. Hernandez, D. London, and J. L. Rosner, Phys. Rev. D, 50:4529 (1994), doi:10.1103/PhysRevD.50.4529,[hep-ph/9404283]
    [20] M. Gronau, O. F. Hernandez, D. London, and J. L. Rosner, Phys. Rev. D, 52:6356 (1995), doi:10.1103/PhysRevD.52.6356,[hep-ph/9504326]
    [21] H. Y. Cheng, C. W. Chiang, and A. L. Kuo, Phys. Rev. D, 91(1):014011 (2015), doi:10.1103/PhysRevD.91.014011, arXiv:1409.5026[hep-ph]
    [22] S. H. Zhou, Q. A. Zhang, W. R. Lyu and C. D. L, Eur. Phys. J. C, 77(2):125 (2017), doi:10.1140/epjc/s10052-017-4685-0, arXiv:1608.02819[hep-ph]
    [23] S. Mller, U. Nierste, and S. Schacht, Phys. Rev. D, 92(1):014004 (2015), doi:10.1103/PhysRevD.92.014004, arXiv:1503.06759[hep-ph]
    [24] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys., 68:1125 (1996), doi:10.1103/RevModPhys.68.1125,[hep-ph/9512380]
    [25] M. Ciuchini, E. Franco, G. Martinelli, and L. Reina, Nucl. Phys. B, 415:403 (1994), doi:10.1016/0550-3213(94)90118-X,[hep-ph/9304257]
    [26] N. G. Deshpande and X. G. He, Phys. Lett. B, 336:471 (1994), doi:10.1016/0370-2693(94)90560-6,[hep-ph/9403266]
    [27] C. K. Chua, arXiv:1802.00155[hep-ph]
    [28] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 110(22):221601 (2013), doi:10.1103/PhysRevLett.110.221601, arXiv:1304.6173[hep-ex]
    [29] X. G. He, S. F. Li, and H. H. Lin, JHEP, 1308:065 (2013), doi:10.1007/JHEP08(2013)065, arXiv:1306.2658[hep-ph]
    [30] T. Aushev et al, arXiv:1002.5012[hep-ex]
    [31] R. Aaij et al (LHCb Collaboration), Eur. Phys. J. C, 73(4):2373 (2013), doi:10.1140/epjc/s10052-013-2373-2, arXiv:1208.3355[hep-ex]
    [32] H. Y. Cheng and C. W. Chiang, Phys. Rev. D, 81:074021 (2010), doi:10.1103/PhysRevD.81.074021, arXiv:1001.0987[hep-ph]
    [33] H. n. Li, C. D. Lu, and F. S. Yu, Phys. Rev. D, 86:036012 (2012), doi:10.1103/PhysRevD.86.036012, arXiv:1203.3120[hep-ph]
  • 加载中

Get Citation
Xiao-Gang He and Wei Wang. Flavor SU(3) topological diagram and irreducible representation amplitudes for heavy meson charmless hadronic decays: mismatch and equivalence[J]. Chinese Physics C, 2018, 42(10): 103108. doi: 10.1088/1674-1137/42/10/103108
Xiao-Gang He and Wei Wang. Flavor SU(3) topological diagram and irreducible representation amplitudes for heavy meson charmless hadronic decays: mismatch and equivalence[J]. Chinese Physics C, 2018, 42(10): 103108.  doi: 10.1088/1674-1137/42/10/103108 shu
Milestone
Received: 2018-04-27
Revised: 2018-07-16
Fund

    Supported by National Natural Science Foundation of China (11575110, 11575111, 11655002, 11735010), Natural Science Foundation of Shanghai (15DZ2272100) and MOST (MOST104-2112-M-002-015-MY3, 106-2112-M-002-003-MY3).

Article Metric

Article Views(1651)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Flavor SU(3) topological diagram and irreducible representation amplitudes for heavy meson charmless hadronic decays: mismatch and equivalence

  • 1. T. -D. Lee Institute and INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
  • 2. Department of Physics, National Taiwan University, Taipei 106
  • 3. National Center for Theoretical Sciences, TsingHua University, Hsinchu 300
  • 4.  T. -D. Lee Institute and INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
Fund Project:  Supported by National Natural Science Foundation of China (11575110, 11575111, 11655002, 11735010), Natural Science Foundation of Shanghai (15DZ2272100) and MOST (MOST104-2112-M-002-015-MY3, 106-2112-M-002-003-MY3).

Abstract: Flavor SU(3) analysis of B meson charmless hadronic two light pseudoscalar decays can be formulated in two different ways. One is to construct the SU(3) irreducible representation amplitude (IRA) according to effective Hamiltonian transformation properties, and the other is to draw the topological diagrams (TDA). We first point out that previous analyses of TDA and IRA approaches do not match in several aspects, in particular a few SU(3) independent amplitudes have been overlooked in the TDA approach. This has caused confusions in the past and sometimes resulted in incorrect interpretation of data. We then demonstrate that only if these amplitudes are included, a consistent and unified picture can be obtained. With the new TDA amplitudes, all charmless hadronic decays of heavy meson must have nonzero direct CP symmetries as already predicted by the IRA approach. In addition to their notable impact on CP asymmetry, the new amplitudes are also important to extract new physics information.

    HTML

Reference (33)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return