Correlation of normal neutrino mass ordering with upper octant of θ23 and third quadrant of δ via RGE-induced μ-τ symmetry breaking

  • The recent global analysis of three-flavor neutrino oscillation data indicates that the normal neutrino mass ordering is favored over the inverted one at the 3σ level, and the best-fit values of the largest neutrino mixing angle θ23 and the Dirac CP-violating phase δ are located in the higher octant and third quadrant, respectively. We show that all these important issues can be naturally explained by the μ-τ reflection symmetry breaking of massive neutrinos from a superhigh energy scale down to the electroweak scale owing to the one-loop renormalization-group equations (RGEs) in the minimal supersymmetric standard model (MSSM). The complete parameter space is explored for the first time in both the Majorana and Dirac cases, by allowing the smallest neutrino mass m1 and the MSSM parameter tanβ to vary within their reasonable regions.
      PCAS:
  • 加载中
  • [1] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001(2016)
    [2] P. Minkowski, Phys. Lett. B, 67:421(1977); T. Yanagida, in Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe, edited by O. Sawada and A. Sugamoto (KEK, Tsukuba, 1979), p. 95; M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Freedman (North Holland, Amsterdam, 1979), p. 315; S.L. Glashow, in it Quarks and Leptons, edited by M. Levy et al, (Plenum, New York, 1980), p. 707; R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett., 44:912(1980). For a brief review of other seesaw mechanisms, see:Z. Z. Xing, Prog. Theor. Phys. Suppl., 180:112(2009), arXiv:0905.3903
    [3] G. Altarelli and F. Feruglio, Rev. Mod. Phys., 82:2701(2010), arXiv:1002.0211; S. F. King, Rept. Prog. Phys., 76:056201(2013), arXiv:1301.1340; A. Aranda, C. Bonilla, S. Morisi, E. Peinado, and J. W. F. Valle, Phys. Rev. D, 89:033001(2014), arXiv:1307.3553; S. Centelles Chuli, R. Srivastava, and J. W. F. Valle, Phys. Lett. B, 773:26(2017), arXiv:1706.00210
    [4] Z. Z. Xing and Z. H. Zhao, Rept. Prog. Phys., 79:076201(2016), arXiv:1512.04207
    [5] P. H. Chankowski and Z. Pluciennik, Phys. Lett. B, 316:312(1993),[hep-ph/9306333]; K. S. Babu, C. N. Leung, and J. T. Pantaleone, Phys. Lett. B, 319:191(1993),[hep-ph/9309223]; J. A. Casas, J. R. Espinosa, A. Ibarra, and I. Navarro, Nucl. Phys. B, 573:652(2000),[hep-ph/9910420]; S. Antusch, M. Drees, J. Kersten, M. Lindner, and M. Ratz, Phys. Lett. B, 519:238(2001),[hep-ph/0108005]; P. H. Chankowski and S. Pokorski, Int. J. Mod. Phys. A, 17:575(2002),[hep-ph/0110249]; S. Antusch, J. Kersten, M. Lindner, M. Ratz, and M. A. Schmidt, JHEP, 0503:024(2005),[hep-ph/0501272]; S. Ray, Int. J. Mod. Phys. A, 25:4339(2010), arXiv:1005.1938; For a recent review with extensive references, see:T. Ohlsson and S. Zhou, Nature Commun., 5:5153(2014), arXiv:1311.3846
    [6] S. Antusch, J. Kersten, M. Lindner, and M. Ratz, Nucl. Phys. B, 674:401(2003),[hep-ph/0305273]
    [7] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys., 28:870(1962); B. Pontecorvo and Sov. Phys., JETP, 26:984(1968),[Zh. Eksp. Teor. Fiz., 53:1717(1967)]
    [8] F. Capozzi, E. Lisi, A. Marrone, and A. Palazzo, arXiv:1804.09678
    [9] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and J. W. F. Valle, arXiv:1708.01186(updated in April 2018); I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and T. Schwetz, JHEP, 01:087(2017), arXiv:1611.01514, and NuFIT 3.2(2018), www.nu-fit.org
    [10] W. Grimus and L. Lavoura, Fortsch. Phys., 61:535(2013), arXiv:1207.1678
    [11] R. N. Mohapatra and C. C. Nishi, JHEP, 1508:092(2015), arXiv:1506.06788
    [12] P. F. Harrison and W. G. Scott, Phys. Lett. B, 547:219(2002),[hep-ph/0210197]; Z. z. Xing, H. Zhang, and S. Zhou, Phys. Lett. B, 641:189(2006),[hep-ph/0607091]; Z. z. Xing, Phys. Rev. D, 78:011301(2008), arXiv:0805.0416; B. Adhikary, A. Ghosal, and P. Roy, JHEP, 0910:040(2009), arXiv:0908.2686; T. Baba and M. Yasue, Prog. Theor. Phys., 123:659(2010), arXiv:1003.1438; Z. z. Xing and Y. L. Zhou, Phys. Lett. B, 693:584(2010), arXiv:1008.4906
    [13] H. Zhang and S. Zhou, Phys. Lett. B, 704:296(2011), arXiv:1107.1097; S. Zhou, arXiv:1205.0761[hep-ph]; Z. z. Xing, Phys. Lett. B, 716:220(2012), arXiv:1205.6532; Z.Z. Xing and S. Zhou, Phys. Lett. B, 737:196(2014), arXiv:1404.7021; R. N. Mohapatra and C. C. Nishi, JHEP, 1508:092(2015), arXiv:1506.06788; Z. z. Xing and J. y. Zhu, Chin. Phys. C, 41:123103(2017), arXiv:1707.03676; Z.H. Zhao, arXiv:1803.04603; N. Nath, arXiv:1805.05823; S. F. King and C. C. Nishi, arXiv:1807.00023[hep-ph]
    [14] S. Luo and Z. Z. Xing, Phys. Rev. D, 90:073005(2014), arXiv:1408.5005
    [15] Y. L. Zhou, arXiv:1409.8600
    [16] Z. H. Zhao, arXiv:1605.04498; Z. H. Zhao, JHEP, 1709:023(2017), arXiv:1703.04984; W. Rodejohann and X. J. Xu, Phys. Rev. D, 96:055039(2017), arXiv:1705.02027; Z. C. Liu, C. X. Yue, and Z. H. Zhao, JHEP, 1710:102(2017), arXiv:1707.05535; N. Nath, Z. z. Xing, and J. Zhang, Eur. Phys. J. C, 78:289(2018), arXiv:1801.09931; and references therein
    [17] Z. Z. Xing, D. Zhang, and J. Y. Zhu, JHEP, 1711:135(2017), arXiv:1708.09144
    [18] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, and A. M. Rotunno, Phys. Rev. Lett., 101:141801(2008), arXiv:0806.2649
    [19] F. P. An et al (Baya Bay Collaboration), Phys. Rev. Lett., 108:171803(2012), arXiv:1203.1669
    [20] J. Ellis and S. Lola, Phys. Lett. B, 458:310(1999),[hep-ph/9904279]; H. Fritzsch and Z. Z. Xing, Prog. Part. Nucl. Phys., 45:1(2000),[hep-ph/9912358]
    [21] F. Feroz and M. P. Hobson, Mon. Not. Roy. Astron. Soc., 384:449(2008), arXiv:0704.3704; F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. Roy. Astron. Soc., 398:1601(2009), arXiv:0809.3437; F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt, arXiv:1306.2144
    [22] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A13(2016), arXiv:1502.01589
    [23] See, e.g., Z. Z. Xing, H. Zhang, and S. Zhou, Phys. Rev. D, 86:013013(2012), arXiv:1112.3112; J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, and A. Strumia, Phys. Lett. B, 709:222(2012), arXiv:1112.3022
    [24] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Phys. Rept., 516:1(2012), arXiv:1106.0034
  • 加载中

Get Citation
Guo-yuan Huang, Zhi-zhong Xing and Jing-yu Zhu. Correlation of normal neutrino mass ordering with upper octant of θ23 and third quadrant of δ via RGE-induced μ-τ symmetry breaking[J]. Chinese Physics C, 2018, 42(12): 123108. doi: 10.1088/1674-1137/42/12/123108
Guo-yuan Huang, Zhi-zhong Xing and Jing-yu Zhu. Correlation of normal neutrino mass ordering with upper octant of θ23 and third quadrant of δ via RGE-induced μ-τ symmetry breaking[J]. Chinese Physics C, 2018, 42(12): 123108.  doi: 10.1088/1674-1137/42/12/123108 shu
Milestone
Received: 2018-07-26
Fund

    Supported by the National Natural Science Foundation of China (11775231, 11775232)

Article Metric

Article Views(1634)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Correlation of normal neutrino mass ordering with upper octant of θ23 and third quadrant of δ via RGE-induced μ-τ symmetry breaking

    Corresponding author: Guo-yuan Huang,
    Corresponding author: Zhi-zhong Xing,
    Corresponding author: Jing-yu Zhu,
Fund Project:  Supported by the National Natural Science Foundation of China (11775231, 11775232)

Abstract: The recent global analysis of three-flavor neutrino oscillation data indicates that the normal neutrino mass ordering is favored over the inverted one at the 3σ level, and the best-fit values of the largest neutrino mixing angle θ23 and the Dirac CP-violating phase δ are located in the higher octant and third quadrant, respectively. We show that all these important issues can be naturally explained by the μ-τ reflection symmetry breaking of massive neutrinos from a superhigh energy scale down to the electroweak scale owing to the one-loop renormalization-group equations (RGEs) in the minimal supersymmetric standard model (MSSM). The complete parameter space is explored for the first time in both the Majorana and Dirac cases, by allowing the smallest neutrino mass m1 and the MSSM parameter tanβ to vary within their reasonable regions.

    HTML

Reference (24)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return