×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei:systematic investigation of the triaxiality effect on the fission barrier

  • Static fission barriers for 95 even-even transuranium nuclei with charge number Z=94-118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional (β2, γ, β4) deformation space. Taking the heavier 252Cf nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112-118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g., the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed.
      PCAS:
  • 加载中
  • [1] A. N. Andreyev, K. Nishio, and K-H Schmidt, Rep. Prog. Phys., 81:016301(2018)
    [2] R. Eichler, J. Phys.:Conf. Ser., 420:012003(2013)
    [3] S. Hofmann and G. Mm nzenberg, Rev. Mod. Phys., 72:733(2000)
    [4] Yu. Ts. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr., 92:023003(2017)
    [5] F. P. Heberger, Eur. Phys. J. A, 53:75(2017)
    [6] M. Arnould and K. Takahashi, Rep. Prog. Phys., 62:395(1999)
    [7] A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A, 679:337(2001)
    [8] N. Bohr and J. A. Wheeler, Phys. Rev., 56:426(1939)
    [9] R. Capote, M. Herman, P. Obložinsk, P. G. Young, S. Goriely, T. Belgya, A. V. Ignatyuk, A. J. Koning, S. Hilaire, V. A. Plujko, M. Avrigeanu, O. Bersillon, M. B. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V. M. Maslov, G. Reffo, M. Sin, E. Sh. Soukhovitskii, and P. Talou, Nucl. Data Sheets, 110:3107(2009)
    [10] V. V. Pashkevich, Nucl. Phys. A, 133:400(1969)
    [11] P. Mmller and S. G. Nilsson, Phys. Lett. B, 31:283(1970)
    [12] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C, 85:011301(R) (2012)
    [13] B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C, 89:014323(2014)
    [14] P. Mmller, A. J. Sierk, and A. Iwamoto, Phys. Rev. Lett, 92:072501(2004)
    [15] A. Sobiczewski and M. Kowal, Phys. Scr., T125:68(2006)
    [16] A. Dobrowolski, K. Pomorski, and J. Bartel, Phys. Rev. C, 75:024613(2007)
    [17] P. Mmller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, and S. berg, Phys. Rev. C, 79:064304(2009)
    [18] A. Dobrowolski, B. Nerlo-Pomorska, K. Pomorski, and J. Bartel, Acta Phys. Pol. B, 40:705(2009)
    [19] M. Kowal, P. Jachimowicz, and A. Sobiczewski, Phys. Rev. C, 82:014303(2010)
    [20] P. Mmller, A. J. Sierk, T. Ichikawa, A. Iwamoto, and M. Mumpower, Phys. Rev. C, 91:024310(2015)
    [21] A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz, Phys. Rev. C, 80:014309(2009)
    [22] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C, 58:2126(1998)
    [23] L. Bonneau, P. Quentin, and D. Samsoen, Eur. Phys. J. A, 21:391(2004)
    [24] A. Staszczak, J. Dobaczewski, and W. Nazarewicz, Acta Phys. Pol. B, 38:1589(2007)
    [25] A. K. Dutta, J. M. Pearson, and F. Tondeur, Phys. Rev. C, 61:054303(2000)
    [26] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C, 82:044303(2010)
    [27] Z. P. Li, T. Nikmimć, D. Vretenar, P. Ring, and J. Meng, Phys. Rev. C, 81:064321(2010)
    [28] P. Ring, H. Abusara, A. V. Afanasjev, G. A. Lalazissis, T. Nikm imć, and D. Vretenar, Int. J. Mod. Phys. E, 20:235(2011)
    [29] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C, 85:024314(2012)
    [30] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C, 95:054324(2017)
    [31] S. W. degrd, G. B. Hagemann, D. R. Jesen, M. Bergstrm, B. Herskind, G. Sletten, S. Trmnen, J. N. Wilson, P. O. Tjm, I. Hamamoto, K. Spohr, H. Hbel, A. Grgen, G. Schnwasser, A. Bracco, S. Leoni, A. Maj, C. M. Petrache, P. Bednarczyk, and D. Curien, Phys. Rev. Lett, 86:5866(2001)
    [32] R. Bengtsson, H. Frisk, F. R. May, and J. A. Pinston, Nucl. Phys. A, 415:189(1984)
    [33] K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse, A. A. Hecht, C. W. Beausang, M. A. Caprio, J. R. Cooper, R. Krcken, J. R. Novak, N. V. Zamfir, K. E. Zyromski, D. J. Hartley, D. L. Balabanski, J. Y. Zhang, S. Frauendorf, and V. I. Dimitrov, Phys. Rev. Lett, 86:971(2001)
    [34] H. L. Wang, J. Yang, M. L. Liu, and F. R. Xu, Phys. Rev. C, 92:024303(2015)
    [35] Q. Z. Chai, H. L. Wang, Q. Yang, and M. L. Liu, Chin. Phys. C, 39:024101(2015)
    [36] Q. Yang, H. L. Wang, M. L. Liu, and F. R. Xu, Phys. Rev. C, 94:024310(2016)
    [37] H. L. Wang, H. L. Liu, F. R. Xu, and C. F. Jiao, Chin. Sci. Bull., 57:1761(2012)
    [38] M. G. Itkis, Yu. Ts. Oganessian, and V. I. Zagrebaev, Phys. Rev. C, 65:044602(2002)
    [39] Yu. Ts. Oganessian, J. Phys. G:Nucl. Phys., 34:R165(2007)
    [40] K. Rutz, M. Bender, T. Brvenich, T. Schilling, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C, 56:238(1997)
    [41] B. Belgoumne, J. Dudek, and T. Werner, Phys. Lett. B, 267:431(1991)
    [42] J. Dudek, B. Szpak, M. G. Porquet, H. Molique, K. Rybak, and B. Fornal, J. Phys. G:Nucl. Phys., 37:064301(2010)
    [43] J. Dudek, B. Szpak, B. Fornal, and A. Dromard, Phys. Scr., T154:014002(2013)
    [44] F. R. Xu, P. M. Walker, J. A. Sheikh, and R. Wyss, Phys. Lett. B, 435:257(1998)
    [45] J. R. Nix, Annu. Rev. Nucl. Sci., 22:65(1972)
    [46] W. Nazarewicz, R. Wyss, and A. Johnson, Nucl. Phys. A, 503:285(1989)
    [47] V. M. Strutinsky, Nucl. Phys. A, 95:420(1967)
    [48] M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, Rev. Mod. Phys 44:320(1972)
    [49] P. H. Regan, F. R. Xu, P. M. Walker, M. Qi, A. K. Rath, and P. D. Stevenson, Phys. Rev. C, 65:037302(2002)
    [50] H. L. Liu, F. R. Xu, P. M. Walker, and C. A. Bertulani, Phys. Rev. C, 83:011303(2011)
    [51] W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson, and I. Ragnarsson, Nucl. Phys. A, 435:397(1985)
    [52] A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26:1(1952)
    [53] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. Ⅱ (World Scientific, Singapore, 1998)
    [54] W. D. Myers and W. J. Swiatecki, Nucl. Phys., 81:1(1966)
    [55] P. Mller and J. R. Nix, At. Data and Nucl. Data Tables, 39:213(1988)
    [56] P. Mller, W. D. Myers, W. J. Swiatecki, and J. Treiner, At. Data and Nucl. Data Tables, 39:225(1988)
    [57] K. Pomorski and J. Dudek, Phys. Rev. C, 67:044316(2003)
    [58] S. Ćwiok, J. Dudek, W. Nazarewicz, J. Skalski, and T. Werner, Comp. Phys. Comm., 46:379(1987)
    [59] M. Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton, Phys. Rev. C, 5:1050(1972)
    [60] R. Bengtsson, J. Dudek, W. Nazarewicz, and P. Olanders, Phys. Scr., 39:196(1989)
    [61] P. Mmller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables, 59:185(1995)
    [62] J. Dudek, W. Nazarewicz and T. Werner, Nucl. Phys. A, 341:253(1980)
    [63] G. A. Leander, J. Dudek, W. Nazarewicz, J. R. Nix, and Ph. Quentin, Phys. Rev. C, 30:416(1984)
    [64] J. Dudek and T. Werner, J. Phys. G:Nucl. Phys., 4:1543(1978)
    [65] J. Dudek, A. Majhofer, J. Skalski, T. Werner, S. Ćwjok and W. Nazarewicz, J. Phys. G:Nucl. Phys., 5:1359(1979)
    [66] J. Dudek, Z. Szymański and T. Werner, Phys. Rev. C, 23:920(1981)
    [67] R. Nojarov, J. Phys. G:Nucl. Phys., 10:539(1984)
    [68] H. C. Pradhan, Y. Nogami, and J. Law, Nucl. Phys. A, 201:357(1973)
    [69] P. Mmller and J. R. Nix, Nucl. Phys. A, 536:20(1992)
    [70] G. Andersson, S. E. Larsson, G. Leander, P. Mller, S. G. Nilsson, I. Ragnarsson, S. berg, R. Bengtsson, J. Dudek, B. Nerlo-Pomorska, K. Pomorski, and Z. Szymański, Nucl. Phys. A, 268:205(1976)
    [71] K. Rutz, J. A. Maruhn, P.-G. Reinhard, and W. Greiner, Nucl. Phys. A, 590:680(1995)
    [72] S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, and W. Nazarewicz, Nucl. Phys. A, 611:211(1996)
    [73] M. Samyn, S. Goriely, and J. M. Pearson, Phys. Rev. C, 72:044316(2005)
    [74] J.-P. Delaroche, M. Girod, H. Goutte, and J. Libert, Nucl. Phys. A, 771:103(2006)
    [75] G. N. Smirenkin, IAEA Report No. INDC(CCP)-359, Vienna, 1993
    [76] S. Karatzikos, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Lett. B, 689:72(2010)
    [77] J. Zhao, B. N. Lu, T. Nikić, D. Vretenar, and S. G. Zhou, Phys. Rev. C, 93:044315(2016)
    [78] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. Data Nucl. Data Tables, 107:1(2016)
    [79] A. Sobiczewski, I. Muntian, and Z. Patyk, Phys. Rev. C, 63:034306(2001)
    [80] P. Mmller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables, 109-110:1(2016)
    [81] S. Goriely, F. Tondeur, and J. M. Pearson, At. Data Nucl. Data Tables, 77:311(2001)
    [82] Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables, 61:127(1995)
    [83] J. Dudek, W. Nazarewicz, and P. Olanders, Nucl. Phys. A, 420:285(1984)
    [84] K. Mazurek, J. Dudek, A. Maj, and D. Rouvel, Phys. Rev. C, 91:034301(2015)
    [85] J. Sadhukhan, W. Nazarewicz, and N. Schunck, Phys. Rev. C, 93:011304(R) (2016)
    [86] N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B, 734:215(2014)
    [87] Q. Zhi and Z. Ren, Phys. Lett. B, 638:166(2006)
    [88] P. Marmier and E. Sheldon, Physics of Nuclei and Particles (Academic Press, New York, 1971)
    [89] C. L. Wu, M. Guidry, and D. H. Feng, Phys. Lett. B, 387:449(1996)
  • 加载中

Get Citation
Qing-Zhen Chai, Wei-Juan Zhao, Min-Liang Liu and Hua-Lei Wang. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei:systematic investigation of the triaxiality effect on the fission barrier[J]. Chinese Physics C, 2018, 42(5): 054101. doi: 10.1088/1674-1137/42/5/054101
Qing-Zhen Chai, Wei-Juan Zhao, Min-Liang Liu and Hua-Lei Wang. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei:systematic investigation of the triaxiality effect on the fission barrier[J]. Chinese Physics C, 2018, 42(5): 054101.  doi: 10.1088/1674-1137/42/5/054101 shu
Milestone
Received: 2018-02-06
Fund

    Supported by National Natural Science Foundation of China (11675148, 11505157), the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2017GGJS008), the Foundation and Advanced Technology Research Program of Henan Province (162300410222), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002) and the Physics Research and Development Program of Zhengzhou University (32410017)

Article Metric

Article Views(1659)
PDF Downloads(37)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei:systematic investigation of the triaxiality effect on the fission barrier

  • 1.  School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 2.  Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Fund Project:  Supported by National Natural Science Foundation of China (11675148, 11505157), the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2017GGJS008), the Foundation and Advanced Technology Research Program of Henan Province (162300410222), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002) and the Physics Research and Development Program of Zhengzhou University (32410017)

Abstract: Static fission barriers for 95 even-even transuranium nuclei with charge number Z=94-118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional (β2, γ, β4) deformation space. Taking the heavier 252Cf nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112-118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g., the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed.

    HTML

Reference (89)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return