Processing math: 100%

Discovery potential of the Glashow resonance in an air shower neutrino telescope

  • The in-ice or in-water Cherenkov neutrino telescope, such as IceCube, has already proved its power in measuring the Glashow resonance by searching for the bump around Eν=6.3PeV arising from the W-boson production. There are many proposals for the next few decades for observations of cosmic tau neutrinos with extensive air showers, also known as tau neutrino telescopes. The air shower telescope is, in principle, sensitive to the Glashow resonance via the channel Wτντ followed by the tau decay in the air (e.g., TAMBO, which has a geometric area of approximately 500km2). Using a thorough numerical analysis, we find that the discovery significance can be up to 90% with a TAMBO-like setup if PeV neutrinos primarily originate from neutron decays, considering the flux parameters measured by IceCube as the input. The presence of new physics affecting the neutrino flavor composition can also increase the significance. However, if ultrahigh-energy neutrinos are dominantly produced from meson decays, it will be statistically difficult for an advanced proposal such as TAMBO to discriminate the Glashow resonance induced by ¯νe from the intrinsic ντ/¯ντ background. We have identified several limitations for such advanced telescopes, in comparison with the in-ice or in-water telescope, when measuring resonances: (i) a suppressed branching ratio of 11% for the decay Wτντ; (ii) the smearing effect and reduced acceptance because the daughter neutrino takes away y 75% of the energy from the W decay; and (iii) a large attenuation effect for Earth-skimming neutrinos with the resonance.
  • [1] S. L. Glashow, Phys. Rev. 118, 316 (1960) doi: 10.1103/PhysRev.118.316
    [2] M. G. Aartsen et al. (IceCube), Nature 591 , 220 (2021) [Erratum: Nature 592 , E11 (2021)] arXiv: 2110.15051
    [3] V. S. Berezinsky and A. Z. Gazizov, JETP Lett. 25, 254 (1977)
    [4] R. W. Brown and F. W. Stecker, Phys. Rev. D 26, 373 (1982) doi: 10.1103/PhysRevD.26.373
    [5] L. A. Anchordoqui, H. Goldberg, F. Halzen et al., Phys. Lett. B 621, 18 (2005), arXiv:hep-ph/0410003 doi: 10.1016/j.physletb.2005.06.056
    [6] S. Hummer, M. Maltoni, W. Winter et al., Astropart. Phys. 34, 205 (2010), arXiv:1007.0006 doi: 10.1016/j.astropartphys.2010.07.003
    [7] Z. Z. Xing and S. Zhou, Phys. Rev. D 84, 033006 (2011), arXiv:1105.4114 doi: 10.1103/PhysRevD.84.033006
    [8] A. Bhattacharya, R. Gandhi, W. Rodejohann et al., JCAP 1110, 017 (2011), arXiv:1108.3163 doi: 10.1088/1475-7516/2011/10/017
    [9] A. Bhattacharya, R. Gandhi, W. Rodejohann et al., On the interpretation of IceCube cascade events in terms of the Glashow resonance, arXiv: 1209.2422
    [10] V. Barger, J. Learned, and S. Pakvasa, Phys. Rev. D 87(3), 037302 (2013), arXiv:1207.4571 doi: 10.1103/PhysRevD.87.037302
    [11] V. Barger, L. Fu, J. G. Learned et al., Phys. Rev. D 90, 121301 (2014), arXiv:1407.3255 doi: 10.1103/PhysRevD.90.121301
    [12] A. Palladino, G. Pagliaroli, F. L. Villante et al., Eur. Phys. J. C 76(2), 52 (2016), arXiv:1510.05921 doi: 10.1140/epjc/s10052-016-3893-3
    [13] I. M. Shoemaker and K. Murase, Phys. Rev. D 93(8), 085004 (2016), arXiv:1512.07228 doi: 10.1103/PhysRevD.93.085004
    [14] L. A. Anchordoqui, M. M. Block, L. Durand et al., Phys. Rev. D 95(8), 083009 (2017), arXiv:1611.07905 doi: 10.1103/PhysRevD.95.083009
    [15] M. D. Kistler and R. Laha, Phys. Rev. Lett. 120(24), 241105 (2018), arXiv:1605.08781 doi: 10.1103/PhysRevLett.120.241105
    [16] D. Biehl, A. Fedynitch, A. Palladino et al., JCAP 1701, 033 (2017), arXiv:1611.07983 doi: 10.1088/1475-7516/2017/01/033
    [17] S. Sahu and B. Zhang, JHEAp 18, 1 (2018), arXiv:1612.09043 doi: 10.1016/j.jheap.2018.01.003
    [18] G. Y. Huang and Q. Liu, JCAP 03, 005 (2020), arXiv:1912.02976 doi: 10.1088/1475-7516/2020/03/005
    [19] S. Zhou, Cosmic Flavor Hexagon for Ultrahigh-energy Neutrinos and Antineutrinos at Neutrino Telescopes, arXiv: 2006.06181
    [20] M. Bustamante, New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos, arXiv: 2004.06844
    [21] V. P. Goncalves, D. R. Gratieri, and A. S. C. Quadros, Eur. Phys. J. C 82(11), 1011 (2022), arXiv:2208.04597 doi: 10.1140/epjc/s10052-022-10992-9
    [22] G. Y. Huang, M. Lindner, and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, arXiv: 2303.13706
    [23] Q. Liu, N. Song, and A. C. Vincent, Probing neutrino production in high-energy astrophysical neutrino sources with the Glashow Resonance, arXiv: 2304.06068
    [24] M. G. Aartsen et al. (IceCube), Science 342, 1242856 (2013), arXiv:1311.5238 doi: 10.1126/science.1242856
    [25] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 111, 021103 (2013), arXiv:1304.5356 doi: 10.1103/PhysRevLett.111.021103
    [26] M. G. Aartsen et al. (IceCube), Science 361(6398), 147 (2018), arXiv:1807.08794 doi: 10.1126/science.aat2890
    [27] R. Abbasi et al. (IceCube), Phys. Rev. D 104, 022002 (2021), arXiv:2011.03545 doi: 10.1103/PhysRevD.104.022002
    [28] R. Abbasi et al. (IceCube), Science 378(6619), 538 (2022), arXiv:2211.09972 doi: 10.1126/science.abg3395
    [29] R. Abbasi et al., Science 380 (7), 6652 (2023), arXiv: 2307.04427
    [30] V. S. Berezinsky and A. Yu. Smirnov, Astrophys. Space Sci. 32, 461 (1975) doi: 10.1007/BF00643157
    [31] G. Domokos and S. Kovesi-Domokos, AIP Conf. Proc. 433(1), 390 (1998), arXiv:hep-ph/9801362
    [32] G. Domokos and S. Kovesi-Domokos, Observation of ultrahigh-energy neutrino interactions by orbiting detectors, " arXiv: hep-ph/9805221
    [33] K. S. Capelle, J. W. Cronin, G. Parente et al., Astropart. Phys. 8, 321 (1998), arXiv:astro-ph/9801313 doi: 10.1016/S0927-6505(97)00059-5
    [34] D. Fargion, A. Aiello, and R. Conversano, Horizontal tau air showers from mountains in deep valley: Traces of UHECR neutrino tau, in Proceedings, 26th International Cosmic Ray Conference (ICRC), August 17-25, 1999, Salt Lake City: Invited, Rapporteur, and Highlight Papers, p. 396. 1999, arXiv: astro-ph/9906450
    [35] D. Fargion, Astrophys. J. 570, 909 (2002), arXiv:astro-ph/0002453 doi: 10.1086/339772
    [36] A. Letessier-Selvon, AIP Conf. Proc. 566(1), 157 (2001), arXiv:astro-ph/0009444 doi: 10.1063/1.1378629
    [37] J. L. Feng, P. Fisher, F. Wilczek et al., Phys. Rev. Lett. 88, 161102 (2002), arXiv:hep-ph/0105067 doi: 10.1103/PhysRevLett.88.161102
    [38] A. Kusenko and T. J. Weiler, Phys. Rev. Lett. 88, 161101 (2002), arXiv:hep-ph/0106071 doi: 10.1103/PhysRevLett.88.161101
    [39] X. Bertou, P. Billoir, O. Deligny et al., Astropart. Phys. 17, 183 (2002), arXiv:astro-ph/0104452 doi: 10.1016/S0927-6505(01)00147-5
    [40] Z. Cao, M. A. Huang, P. Sokolsky et al., J. Phys. G 31, 571 (2005), arXiv:astro-ph/0411677 doi: 10.1088/0954-3899/31/7/004
    [41] E. Zas, New J. Phys. 7, 130 (2005), arXiv:astro-ph/0504610 doi: 10.1088/1367-2630/7/1/130
    [42] B. Baret and V. Van Elewyck, Rept. Prog. Phys. 74, 046902 (2011) doi: 10.1088/0034-4885/74/4/046902
    [43] G. Y. Huang, S. Jana, M. Lindner et al., JCAP 02(02), 038 (2022), arXiv:2112.09476 doi: 10.1088/1475-7516/2022/02/038
    [44] R. M. Abraham et al., Tau Neutrinos in the Next Decade: from GeV to EeV, arXiv: 2203.05591
    [45] M. Ackermann et al., JHEAp 36, 55 (2022), arXiv:2203.08096 doi: 10.1016/j.jheap.2022.08.001
    [46] C. A. Argüelles et al., Snowmass White Paper: Beyond the Standard Model effects on Neutrino Flavor, in 2022 Snowmass Summer Study, 3, 2022, arXiv: 2203.10811
    [47] A. Neronov, D. V. Semikoz, L. A. Anchordoqui et al., Phys. Rev. D 95(2), 023004 (2017), arXiv:1606.03629 doi: 10.1103/PhysRevD.95.023004
    [48] J. Álvarez-Muñiz et al. (GRAND), Sci. China Phys. Mech. Astron. 63(1), 219501 (2020), arXiv:1810.09994 doi: 10.1007/s11433-018-9385-7
    [49] A. N. Otte, Phys. Rev. D 99(8), 083012 (2019), arXiv:1811.09287 doi: 10.1103/PhysRevD.99.083012
    [50] A. N. Otte, A. M. Brown, M. Doro et al., Trinity: An Air-Shower Imaging Instrument to detect Ultrahigh Energy Neutrinos, arXiv: 1907.08727
    [51] P. Allison et al. (ARA), Phys. Rev. D 102(4), 043021 (2020), arXiv:1912.00987 doi: 10.1103/PhysRevD.102.043021
    [52] Q. Abarr et al., The Payload for Ultrahigh Energy Observations (PUEO): A White Paper, arXiv: 2010.02892
    [53] A. Anker et al., "White Paper: ARIANNA-200 high energy neutrino telescope, " arXiv: 2004.09841.
    [54] J. A. Aguilar et al. (RNO-G), JINST 16(03), P03025 (2021), arXiv:2010.12279 doi: 10.1088/1748-0221/16/03/P03025
    [55] M. G. Aartsen et al. (IceCube-Gen2), J. Phys. G 48(6), 060501 (2021), arXiv:2008.04323 doi: 10.1088/1361-6471/abbd48
    [56] A. V. Olinto et al. (POEMMA), JCAP 06, 007 (2021), arXiv:2012.07945 doi: 10.1088/1475-7516/2021/06/007
    [57] A. Romero-Wolf et al., An Andean Deep-Valley Detector for High-Energy Tau Neutrinos, in Latin American Strategy Forum for Research Infrastructure, 2, 2020, arXiv: 2002.06475
    [58] S. Wissel et al., PoS ICRC2019, 1033 (2020) doi: 10.22323/1.358.1033
    [59] S. Wissel et al., JCAP 11, 065 (2020), arXiv:2004.12718 doi: 10.1088/1475-7516/2020/11/065
    [60] S. Hallmann et al. (IceCube-Gen2), PoS ICRC2021, 1183 (2021), arXiv:2107.08910 doi: 10.22323/1.395.1183
    [61] S. Ogawa and M. Sasaki, PoS ICRC2021, 970 (2021) doi: 10.22323/1.395.0970
    [62] K. de Vries et al., PoS ICRC2021, 1195 (2021) doi: 10.22323/1.395.1195
    [63] T. Ježo, M. Klasen, F. Lyonnet et al., Phys. Rev. D 89(7), 077702 (2014), arXiv:1401.6012 doi: 10.1103/PhysRevD.89.077702
    [64] Y. Jho and S. C. Park, Phys. Rev. D 104(1), 015018 (2021), arXiv:1806.03063 doi: 10.1103/PhysRevD.104.015018
    [65] P. B. Denton and Y. Kini, Phys. Rev. D 102, 123019 (2020), arXiv:2007.10334 doi: 10.1103/PhysRevD.102.123019
    [66] A. G. Soto, P. Zhelnin, I. Safa et al., Phys. Rev. Lett. 128(17), 171101 (2022), arXiv:2112.06937 doi: 10.1103/PhysRevLett.128.171101
    [67] V. B. Valera, M. Bustamante, and C. Glaser, JHEP 06, 105 (2022), arXiv:2204.04237 doi: 10.1007/JHEP06(2022)105
    [68] G. Y. Huang, S. Jana, M. Lindner et al., Probing Heavy Sterile Neutrinos at Ultrahigh Energy Neutrino Telescopes via the Dipole Portal, arXiv: 2204.10347
    [69] I. Esteban, S. Prohira, and J. F. Beacom, Detector Requirements for Model-Independent Measurements of Ultrahigh Energy Neutrino Cross Sections, arXiv: 2205.09763
    [70] G. Y. Huang, Eur. Phys. J. C 82(12), 1089 (2022), arXiv:2207.02222 doi: 10.1140/epjc/s10052-022-11052-y
    [71] V. Brdar, P. S. B. Dev, R. Plestid et al., Phys. Lett. B 833, 137358 (2022), arXiv:2207.02860 doi: 10.1016/j.physletb.2022.137358
    [72] A. Garcia Soto, D. Garg, M. H. Reno et al., Phys. Rev. D 107(3), 033009 (2023), arXiv:2209.06282 doi: 10.1103/PhysRevD.107.033009
    [73] V. B. Valera, M. Bustamante, and C. Glaser, Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos, arXiv: 2210.03756
    [74] R. Heighton, L. Heurtier, and M. Spannowsky, Hunting for Neutral Leptons with Ultra-High-Energy Cosmic Rays, arXiv: 2303.11352
    [75] T. Bertólez-Martínez, C. A. Argüelles, I. Esteban et al., JHEP 07, 005 (2023), arXiv:2305.03746 doi: 10.1007/JHEP07(2023)005
    [76] K. Greisen, Phys. Rev. Lett. 16, 748 (1966) doi: 10.1103/PhysRevLett.16.748
    [77] G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966)
    [78] V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. 28, (1969)
    [79] A. Aab et al. (Pierre Auger), Nucl. Instrum. Meth. A 798, 172 (2015), arXiv:1502.01323 doi: 10.1016/j.nima.2015.06.058
    [80] C. A. Argüelles, J. Salvado, and C. N. Weaver, Comput. Phys. Commun. 255, 107405 (2020) doi: 10.1016/j.cpc.2020.107405
    [81] J. Alvarez-Muñiz, W. R. Carvalho, A. L. Cummings et al., Phys. Rev. D 97 (2), 023021 (2018) [Erratum: Phys. Rev. D 99 , 069902 (2019)], arXiv: 1707.00334
    [82] A. Garcia, R. Gauld, A. Heijboer, and J. Rojo, JCAP 09, 025 (2020), arXiv:2004.04756 doi: 10.1088/1475-7516/2020/09/025
    [83] S. Patel et al. (NuSpaceSim), PoS ,ICRC2021, 1203 (2021), arXiv:2109.08198 doi: 10.22323/1.395.1203
    [84] J. H. Koehne, K. Frantzen, M. Schmitz et al., Comput. Phys. Commun. 184, 2070 (2013) doi: 10.1016/j.cpc.2013.04.001
    [85] I. Safa, A. Pizzuto, C. A. Argüelles et al., JCAP 01, 012 (2020), arXiv:1909.10487 doi: 10.1088/1475-7516/2020/01/012
    [86] I. Safa, J. Lazar, A. Pizzuto et al., TauRunner: A Public Python Program to Propagate Neutral and Charged Leptons, arXiv: 2110.14662
    [87] https://education.nationalgeographic.org/resource/canyon/.
    [88] A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Interiors 25, 297 (1981) doi: 10.1016/0031-9201(81)90046-7
    [89] J. F. Beacom, P. Crotty, and E. W. Kolb, Phys. Rev. D 66, 021302 (2002), arXiv:astro-ph/0111482 doi: 10.1103/PhysRevD.66.021302
    [90] S. I. Dutta, M. H. Reno, and I. Sarcevic, Phys. Rev. D 66, 077302 (2002), arXiv:hep-ph/0207344 doi: 10.1103/PhysRevD.66.077302
    [91] J. Stettner et al. (IceCube), Measurement of the Diffuse Astrophysical Muon-Neutrino Spectrum with Ten Years of IceCube Data, in HAWC Contributions to the 36th International Cosmic Ray Conference (ICRC2019), 2019, arXiv: 1908.09551
    [92] M. G. Aartsen et al. (IceCube), Phys. Rev. D 98(6), 062003 (2018), arXiv:1807.01820 doi: 10.1103/PhysRevD.98.062003
    [93] A. Aab et al. (Pierre Auger), JCAP 10, 022 (2019), arXiv:1906.07422 doi: 10.1088/1475-7516/2019/10/022
    [94] O. Mena, S. Palomares-Ruiz, and A. C. Vincent, Phys. Rev. Lett. 113, 091103 (2014), arXiv:1404.0017 doi: 10.1103/PhysRevLett.113.091103
    [95] C. Y. Chen, P. S. Bhupal Dev, and A. Soni, Phys. Rev. D 92(7), 073001 (2015), arXiv:1411.5658 doi: 10.1103/PhysRevD.92.073001
    [96] S. Palomares-Ruiz, A. C. Vincent, and O. Mena, Phys. Rev. D 91(10), 103008 (2015), arXiv:1502.02649 doi: 10.1103/PhysRevD.91.103008
    [97] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 114(17), 171102 (2015), arXiv:1502.03376 doi: 10.1103/PhysRevLett.114.171102
    [98] A. Palladino, G. Pagliaroli, F. L. Villante et al., Phys. Rev. Lett. 114(17), 171101 (2015), arXiv:1502.02923 doi: 10.1103/PhysRevLett.114.171101
    [99] C. A. Argüelles, T. Katori, and J. Salvado, Phys. Rev. Lett. 115, 161303 (2015), arXiv:1506.02043 doi: 10.1103/PhysRevLett.115.161303
    [100] M. Bustamante, J. F. Beacom, and W. Winter, Phys. Rev. Lett. 115(16), 161302 (2015), arXiv:1506.02645 doi: 10.1103/PhysRevLett.115.161302
    [101] M. G. Aartsen et al. (IceCube), Astrophys. J. 809(1), 98 (2015), arXiv:1507.03991 doi: 10.1088/0004-637X/809/1/98
    [102] V. Brdar, J. Kopp, and X.-P. Wang, JCAP 01, 026 (2017), arXiv:1611.04598 doi: 10.1088/1475-7516/2017/01/026
    [103] G. D'Amico, Astropart. Phys. 101, 8 (2018), arXiv:1712.04979 doi: 10.1016/j.astropartphys.2018.04.002
    [104] G. Pagliaroli, A. Palladino, F. L. Villante et al., Phys. Rev. D 92(11), 113008 (2015), arXiv:1506.02624 doi: 10.1103/PhysRevD.92.113008
    [105] R. W. Rasmussen, L. Lechner, M. Ackermann et al., Phys. Rev. D 96(8), 083018 (2017), arXiv:1707.07684 doi: 10.1103/PhysRevD.96.083018
    [106] V. Brdar and R. S. L. Hansen, JCAP 02, 023 (2019), arXiv:1812.05541 doi: 10.1088/1475-7516/2019/02/023
    [107] M. Bustamante and M. Ahlers, Phys. Rev. Lett. 122(24), 241101 (2019), arXiv:1901.10087 doi: 10.1103/PhysRevLett.122.241101
    [108] A. Palladino, Eur. Phys. J. C 79(6), 500 (2019), arXiv:1902.08630 doi: 10.1140/epjc/s10052-019-7018-7
    [109] J. Stachurska et al. (IceCube), EPJ Web Conf. 207, 02005 (2019), arXiv:1905.04237 doi: 10.1051/epjconf/201920702005
    [110] N. Song, S. W. Li, C. A. Argüelles et al., JCAP 04, 054 (2021), arXiv:2012.12893 doi: 10.54583/apic.vol4.no2.69
    [111] G. Punzi, eConf C 030908, MODT002 (2003), arXiv:physics/0308063
    [112] M. Agostini, G. Benato, and J. Detwiler, Phys. Rev. D 96(5), 053001 (2017), arXiv:1705.02996 doi: 10.1103/PhysRevD.96.053001
    [113] C. A. Argüelles et al., Eur. Phys. J. C 83(1), 15 (2023), arXiv:2203.10811 doi: 10.1140/epjc/s10052-022-11049-7
  • [1] S. L. Glashow, Phys. Rev. 118, 316 (1960) doi: 10.1103/PhysRev.118.316
    [2] M. G. Aartsen et al. (IceCube), Nature 591 , 220 (2021) [Erratum: Nature 592 , E11 (2021)] arXiv: 2110.15051
    [3] V. S. Berezinsky and A. Z. Gazizov, JETP Lett. 25, 254 (1977)
    [4] R. W. Brown and F. W. Stecker, Phys. Rev. D 26, 373 (1982) doi: 10.1103/PhysRevD.26.373
    [5] L. A. Anchordoqui, H. Goldberg, F. Halzen et al., Phys. Lett. B 621, 18 (2005), arXiv:hep-ph/0410003 doi: 10.1016/j.physletb.2005.06.056
    [6] S. Hummer, M. Maltoni, W. Winter et al., Astropart. Phys. 34, 205 (2010), arXiv:1007.0006 doi: 10.1016/j.astropartphys.2010.07.003
    [7] Z. Z. Xing and S. Zhou, Phys. Rev. D 84, 033006 (2011), arXiv:1105.4114 doi: 10.1103/PhysRevD.84.033006
    [8] A. Bhattacharya, R. Gandhi, W. Rodejohann et al., JCAP 1110, 017 (2011), arXiv:1108.3163 doi: 10.1088/1475-7516/2011/10/017
    [9] A. Bhattacharya, R. Gandhi, W. Rodejohann et al., On the interpretation of IceCube cascade events in terms of the Glashow resonance, arXiv: 1209.2422
    [10] V. Barger, J. Learned, and S. Pakvasa, Phys. Rev. D 87(3), 037302 (2013), arXiv:1207.4571 doi: 10.1103/PhysRevD.87.037302
    [11] V. Barger, L. Fu, J. G. Learned et al., Phys. Rev. D 90, 121301 (2014), arXiv:1407.3255 doi: 10.1103/PhysRevD.90.121301
    [12] A. Palladino, G. Pagliaroli, F. L. Villante et al., Eur. Phys. J. C 76(2), 52 (2016), arXiv:1510.05921 doi: 10.1140/epjc/s10052-016-3893-3
    [13] I. M. Shoemaker and K. Murase, Phys. Rev. D 93(8), 085004 (2016), arXiv:1512.07228 doi: 10.1103/PhysRevD.93.085004
    [14] L. A. Anchordoqui, M. M. Block, L. Durand et al., Phys. Rev. D 95(8), 083009 (2017), arXiv:1611.07905 doi: 10.1103/PhysRevD.95.083009
    [15] M. D. Kistler and R. Laha, Phys. Rev. Lett. 120(24), 241105 (2018), arXiv:1605.08781 doi: 10.1103/PhysRevLett.120.241105
    [16] D. Biehl, A. Fedynitch, A. Palladino et al., JCAP 1701, 033 (2017), arXiv:1611.07983 doi: 10.1088/1475-7516/2017/01/033
    [17] S. Sahu and B. Zhang, JHEAp 18, 1 (2018), arXiv:1612.09043 doi: 10.1016/j.jheap.2018.01.003
    [18] G. Y. Huang and Q. Liu, JCAP 03, 005 (2020), arXiv:1912.02976 doi: 10.1088/1475-7516/2020/03/005
    [19] S. Zhou, Cosmic Flavor Hexagon for Ultrahigh-energy Neutrinos and Antineutrinos at Neutrino Telescopes, arXiv: 2006.06181
    [20] M. Bustamante, New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos, arXiv: 2004.06844
    [21] V. P. Goncalves, D. R. Gratieri, and A. S. C. Quadros, Eur. Phys. J. C 82(11), 1011 (2022), arXiv:2208.04597 doi: 10.1140/epjc/s10052-022-10992-9
    [22] G. Y. Huang, M. Lindner, and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, arXiv: 2303.13706
    [23] Q. Liu, N. Song, and A. C. Vincent, Probing neutrino production in high-energy astrophysical neutrino sources with the Glashow Resonance, arXiv: 2304.06068
    [24] M. G. Aartsen et al. (IceCube), Science 342, 1242856 (2013), arXiv:1311.5238 doi: 10.1126/science.1242856
    [25] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 111, 021103 (2013), arXiv:1304.5356 doi: 10.1103/PhysRevLett.111.021103
    [26] M. G. Aartsen et al. (IceCube), Science 361(6398), 147 (2018), arXiv:1807.08794 doi: 10.1126/science.aat2890
    [27] R. Abbasi et al. (IceCube), Phys. Rev. D 104, 022002 (2021), arXiv:2011.03545 doi: 10.1103/PhysRevD.104.022002
    [28] R. Abbasi et al. (IceCube), Science 378(6619), 538 (2022), arXiv:2211.09972 doi: 10.1126/science.abg3395
    [29] R. Abbasi et al., Science 380 (7), 6652 (2023), arXiv: 2307.04427
    [30] V. S. Berezinsky and A. Yu. Smirnov, Astrophys. Space Sci. 32, 461 (1975) doi: 10.1007/BF00643157
    [31] G. Domokos and S. Kovesi-Domokos, AIP Conf. Proc. 433(1), 390 (1998), arXiv:hep-ph/9801362
    [32] G. Domokos and S. Kovesi-Domokos, Observation of ultrahigh-energy neutrino interactions by orbiting detectors, " arXiv: hep-ph/9805221
    [33] K. S. Capelle, J. W. Cronin, G. Parente et al., Astropart. Phys. 8, 321 (1998), arXiv:astro-ph/9801313 doi: 10.1016/S0927-6505(97)00059-5
    [34] D. Fargion, A. Aiello, and R. Conversano, Horizontal tau air showers from mountains in deep valley: Traces of UHECR neutrino tau, in Proceedings, 26th International Cosmic Ray Conference (ICRC), August 17-25, 1999, Salt Lake City: Invited, Rapporteur, and Highlight Papers, p. 396. 1999, arXiv: astro-ph/9906450
    [35] D. Fargion, Astrophys. J. 570, 909 (2002), arXiv:astro-ph/0002453 doi: 10.1086/339772
    [36] A. Letessier-Selvon, AIP Conf. Proc. 566(1), 157 (2001), arXiv:astro-ph/0009444 doi: 10.1063/1.1378629
    [37] J. L. Feng, P. Fisher, F. Wilczek et al., Phys. Rev. Lett. 88, 161102 (2002), arXiv:hep-ph/0105067 doi: 10.1103/PhysRevLett.88.161102
    [38] A. Kusenko and T. J. Weiler, Phys. Rev. Lett. 88, 161101 (2002), arXiv:hep-ph/0106071 doi: 10.1103/PhysRevLett.88.161101
    [39] X. Bertou, P. Billoir, O. Deligny et al., Astropart. Phys. 17, 183 (2002), arXiv:astro-ph/0104452 doi: 10.1016/S0927-6505(01)00147-5
    [40] Z. Cao, M. A. Huang, P. Sokolsky et al., J. Phys. G 31, 571 (2005), arXiv:astro-ph/0411677 doi: 10.1088/0954-3899/31/7/004
    [41] E. Zas, New J. Phys. 7, 130 (2005), arXiv:astro-ph/0504610 doi: 10.1088/1367-2630/7/1/130
    [42] B. Baret and V. Van Elewyck, Rept. Prog. Phys. 74, 046902 (2011) doi: 10.1088/0034-4885/74/4/046902
    [43] G. Y. Huang, S. Jana, M. Lindner et al., JCAP 02(02), 038 (2022), arXiv:2112.09476 doi: 10.1088/1475-7516/2022/02/038
    [44] R. M. Abraham et al., Tau Neutrinos in the Next Decade: from GeV to EeV, arXiv: 2203.05591
    [45] M. Ackermann et al., JHEAp 36, 55 (2022), arXiv:2203.08096 doi: 10.1016/j.jheap.2022.08.001
    [46] C. A. Argüelles et al., Snowmass White Paper: Beyond the Standard Model effects on Neutrino Flavor, in 2022 Snowmass Summer Study, 3, 2022, arXiv: 2203.10811
    [47] A. Neronov, D. V. Semikoz, L. A. Anchordoqui et al., Phys. Rev. D 95(2), 023004 (2017), arXiv:1606.03629 doi: 10.1103/PhysRevD.95.023004
    [48] J. Álvarez-Muñiz et al. (GRAND), Sci. China Phys. Mech. Astron. 63(1), 219501 (2020), arXiv:1810.09994 doi: 10.1007/s11433-018-9385-7
    [49] A. N. Otte, Phys. Rev. D 99(8), 083012 (2019), arXiv:1811.09287 doi: 10.1103/PhysRevD.99.083012
    [50] A. N. Otte, A. M. Brown, M. Doro et al., Trinity: An Air-Shower Imaging Instrument to detect Ultrahigh Energy Neutrinos, arXiv: 1907.08727
    [51] P. Allison et al. (ARA), Phys. Rev. D 102(4), 043021 (2020), arXiv:1912.00987 doi: 10.1103/PhysRevD.102.043021
    [52] Q. Abarr et al., The Payload for Ultrahigh Energy Observations (PUEO): A White Paper, arXiv: 2010.02892
    [53] A. Anker et al., "White Paper: ARIANNA-200 high energy neutrino telescope, " arXiv: 2004.09841.
    [54] J. A. Aguilar et al. (RNO-G), JINST 16(03), P03025 (2021), arXiv:2010.12279 doi: 10.1088/1748-0221/16/03/P03025
    [55] M. G. Aartsen et al. (IceCube-Gen2), J. Phys. G 48(6), 060501 (2021), arXiv:2008.04323 doi: 10.1088/1361-6471/abbd48
    [56] A. V. Olinto et al. (POEMMA), JCAP 06, 007 (2021), arXiv:2012.07945 doi: 10.1088/1475-7516/2021/06/007
    [57] A. Romero-Wolf et al., An Andean Deep-Valley Detector for High-Energy Tau Neutrinos, in Latin American Strategy Forum for Research Infrastructure, 2, 2020, arXiv: 2002.06475
    [58] S. Wissel et al., PoS ICRC2019, 1033 (2020) doi: 10.22323/1.358.1033
    [59] S. Wissel et al., JCAP 11, 065 (2020), arXiv:2004.12718 doi: 10.1088/1475-7516/2020/11/065
    [60] S. Hallmann et al. (IceCube-Gen2), PoS ICRC2021, 1183 (2021), arXiv:2107.08910 doi: 10.22323/1.395.1183
    [61] S. Ogawa and M. Sasaki, PoS ICRC2021, 970 (2021) doi: 10.22323/1.395.0970
    [62] K. de Vries et al., PoS ICRC2021, 1195 (2021) doi: 10.22323/1.395.1195
    [63] T. Ježo, M. Klasen, F. Lyonnet et al., Phys. Rev. D 89(7), 077702 (2014), arXiv:1401.6012 doi: 10.1103/PhysRevD.89.077702
    [64] Y. Jho and S. C. Park, Phys. Rev. D 104(1), 015018 (2021), arXiv:1806.03063 doi: 10.1103/PhysRevD.104.015018
    [65] P. B. Denton and Y. Kini, Phys. Rev. D 102, 123019 (2020), arXiv:2007.10334 doi: 10.1103/PhysRevD.102.123019
    [66] A. G. Soto, P. Zhelnin, I. Safa et al., Phys. Rev. Lett. 128(17), 171101 (2022), arXiv:2112.06937 doi: 10.1103/PhysRevLett.128.171101
    [67] V. B. Valera, M. Bustamante, and C. Glaser, JHEP 06, 105 (2022), arXiv:2204.04237 doi: 10.1007/JHEP06(2022)105
    [68] G. Y. Huang, S. Jana, M. Lindner et al., Probing Heavy Sterile Neutrinos at Ultrahigh Energy Neutrino Telescopes via the Dipole Portal, arXiv: 2204.10347
    [69] I. Esteban, S. Prohira, and J. F. Beacom, Detector Requirements for Model-Independent Measurements of Ultrahigh Energy Neutrino Cross Sections, arXiv: 2205.09763
    [70] G. Y. Huang, Eur. Phys. J. C 82(12), 1089 (2022), arXiv:2207.02222 doi: 10.1140/epjc/s10052-022-11052-y
    [71] V. Brdar, P. S. B. Dev, R. Plestid et al., Phys. Lett. B 833, 137358 (2022), arXiv:2207.02860 doi: 10.1016/j.physletb.2022.137358
    [72] A. Garcia Soto, D. Garg, M. H. Reno et al., Phys. Rev. D 107(3), 033009 (2023), arXiv:2209.06282 doi: 10.1103/PhysRevD.107.033009
    [73] V. B. Valera, M. Bustamante, and C. Glaser, Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos, arXiv: 2210.03756
    [74] R. Heighton, L. Heurtier, and M. Spannowsky, Hunting for Neutral Leptons with Ultra-High-Energy Cosmic Rays, arXiv: 2303.11352
    [75] T. Bertólez-Martínez, C. A. Argüelles, I. Esteban et al., JHEP 07, 005 (2023), arXiv:2305.03746 doi: 10.1007/JHEP07(2023)005
    [76] K. Greisen, Phys. Rev. Lett. 16, 748 (1966) doi: 10.1103/PhysRevLett.16.748
    [77] G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966)
    [78] V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. 28, (1969)
    [79] A. Aab et al. (Pierre Auger), Nucl. Instrum. Meth. A 798, 172 (2015), arXiv:1502.01323 doi: 10.1016/j.nima.2015.06.058
    [80] C. A. Argüelles, J. Salvado, and C. N. Weaver, Comput. Phys. Commun. 255, 107405 (2020) doi: 10.1016/j.cpc.2020.107405
    [81] J. Alvarez-Muñiz, W. R. Carvalho, A. L. Cummings et al., Phys. Rev. D 97 (2), 023021 (2018) [Erratum: Phys. Rev. D 99 , 069902 (2019)], arXiv: 1707.00334
    [82] A. Garcia, R. Gauld, A. Heijboer, and J. Rojo, JCAP 09, 025 (2020), arXiv:2004.04756 doi: 10.1088/1475-7516/2020/09/025
    [83] S. Patel et al. (NuSpaceSim), PoS ,ICRC2021, 1203 (2021), arXiv:2109.08198 doi: 10.22323/1.395.1203
    [84] J. H. Koehne, K. Frantzen, M. Schmitz et al., Comput. Phys. Commun. 184, 2070 (2013) doi: 10.1016/j.cpc.2013.04.001
    [85] I. Safa, A. Pizzuto, C. A. Argüelles et al., JCAP 01, 012 (2020), arXiv:1909.10487 doi: 10.1088/1475-7516/2020/01/012
    [86] I. Safa, J. Lazar, A. Pizzuto et al., TauRunner: A Public Python Program to Propagate Neutral and Charged Leptons, arXiv: 2110.14662
    [87] https://education.nationalgeographic.org/resource/canyon/.
    [88] A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Interiors 25, 297 (1981) doi: 10.1016/0031-9201(81)90046-7
    [89] J. F. Beacom, P. Crotty, and E. W. Kolb, Phys. Rev. D 66, 021302 (2002), arXiv:astro-ph/0111482 doi: 10.1103/PhysRevD.66.021302
    [90] S. I. Dutta, M. H. Reno, and I. Sarcevic, Phys. Rev. D 66, 077302 (2002), arXiv:hep-ph/0207344 doi: 10.1103/PhysRevD.66.077302
    [91] J. Stettner et al. (IceCube), Measurement of the Diffuse Astrophysical Muon-Neutrino Spectrum with Ten Years of IceCube Data, in HAWC Contributions to the 36th International Cosmic Ray Conference (ICRC2019), 2019, arXiv: 1908.09551
    [92] M. G. Aartsen et al. (IceCube), Phys. Rev. D 98(6), 062003 (2018), arXiv:1807.01820 doi: 10.1103/PhysRevD.98.062003
    [93] A. Aab et al. (Pierre Auger), JCAP 10, 022 (2019), arXiv:1906.07422 doi: 10.1088/1475-7516/2019/10/022
    [94] O. Mena, S. Palomares-Ruiz, and A. C. Vincent, Phys. Rev. Lett. 113, 091103 (2014), arXiv:1404.0017 doi: 10.1103/PhysRevLett.113.091103
    [95] C. Y. Chen, P. S. Bhupal Dev, and A. Soni, Phys. Rev. D 92(7), 073001 (2015), arXiv:1411.5658 doi: 10.1103/PhysRevD.92.073001
    [96] S. Palomares-Ruiz, A. C. Vincent, and O. Mena, Phys. Rev. D 91(10), 103008 (2015), arXiv:1502.02649 doi: 10.1103/PhysRevD.91.103008
    [97] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 114(17), 171102 (2015), arXiv:1502.03376 doi: 10.1103/PhysRevLett.114.171102
    [98] A. Palladino, G. Pagliaroli, F. L. Villante et al., Phys. Rev. Lett. 114(17), 171101 (2015), arXiv:1502.02923 doi: 10.1103/PhysRevLett.114.171101
    [99] C. A. Argüelles, T. Katori, and J. Salvado, Phys. Rev. Lett. 115, 161303 (2015), arXiv:1506.02043 doi: 10.1103/PhysRevLett.115.161303
    [100] M. Bustamante, J. F. Beacom, and W. Winter, Phys. Rev. Lett. 115(16), 161302 (2015), arXiv:1506.02645 doi: 10.1103/PhysRevLett.115.161302
    [101] M. G. Aartsen et al. (IceCube), Astrophys. J. 809(1), 98 (2015), arXiv:1507.03991 doi: 10.1088/0004-637X/809/1/98
    [102] V. Brdar, J. Kopp, and X.-P. Wang, JCAP 01, 026 (2017), arXiv:1611.04598 doi: 10.1088/1475-7516/2017/01/026
    [103] G. D'Amico, Astropart. Phys. 101, 8 (2018), arXiv:1712.04979 doi: 10.1016/j.astropartphys.2018.04.002
    [104] G. Pagliaroli, A. Palladino, F. L. Villante et al., Phys. Rev. D 92(11), 113008 (2015), arXiv:1506.02624 doi: 10.1103/PhysRevD.92.113008
    [105] R. W. Rasmussen, L. Lechner, M. Ackermann et al., Phys. Rev. D 96(8), 083018 (2017), arXiv:1707.07684 doi: 10.1103/PhysRevD.96.083018
    [106] V. Brdar and R. S. L. Hansen, JCAP 02, 023 (2019), arXiv:1812.05541 doi: 10.1088/1475-7516/2019/02/023
    [107] M. Bustamante and M. Ahlers, Phys. Rev. Lett. 122(24), 241101 (2019), arXiv:1901.10087 doi: 10.1103/PhysRevLett.122.241101
    [108] A. Palladino, Eur. Phys. J. C 79(6), 500 (2019), arXiv:1902.08630 doi: 10.1140/epjc/s10052-019-7018-7
    [109] J. Stachurska et al. (IceCube), EPJ Web Conf. 207, 02005 (2019), arXiv:1905.04237 doi: 10.1051/epjconf/201920702005
    [110] N. Song, S. W. Li, C. A. Argüelles et al., JCAP 04, 054 (2021), arXiv:2012.12893 doi: 10.54583/apic.vol4.no2.69
    [111] G. Punzi, eConf C 030908, MODT002 (2003), arXiv:physics/0308063
    [112] M. Agostini, G. Benato, and J. Detwiler, Phys. Rev. D 96(5), 053001 (2017), arXiv:1705.02996 doi: 10.1103/PhysRevD.96.053001
    [113] C. A. Argüelles et al., Eur. Phys. J. C 83(1), 15 (2023), arXiv:2203.10811 doi: 10.1140/epjc/s10052-022-11049-7
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831

Figures(5)

Get Citation
Guo-yuan Huang. Discovery potential of the Glashow resonance in an air shower neutrino telescope[J]. Chinese Physics C. doi: 10.1088/1674-1137/ad4c5c
Guo-yuan Huang. Discovery potential of the Glashow resonance in an air shower neutrino telescope[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ad4c5c shu
Milestone
Received: 2024-04-02
Article Metric

Article Views(982)
PDF Downloads(8)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Discovery potential of the Glashow resonance in an air shower neutrino telescope

  • 1. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
  • 2. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Abstract: The in-ice or in-water Cherenkov neutrino telescope, such as IceCube, has already proved its power in measuring the Glashow resonance by searching for the bump around Eν=6.3PeV arising from the W-boson production. There are many proposals for the next few decades for observations of cosmic tau neutrinos with extensive air showers, also known as tau neutrino telescopes. The air shower telescope is, in principle, sensitive to the Glashow resonance via the channel Wτντ followed by the tau decay in the air (e.g., TAMBO, which has a geometric area of approximately 500km2). Using a thorough numerical analysis, we find that the discovery significance can be up to 90% with a TAMBO-like setup if PeV neutrinos primarily originate from neutron decays, considering the flux parameters measured by IceCube as the input. The presence of new physics affecting the neutrino flavor composition can also increase the significance. However, if ultrahigh-energy neutrinos are dominantly produced from meson decays, it will be statistically difficult for an advanced proposal such as TAMBO to discriminate the Glashow resonance induced by ¯νe from the intrinsic ντ/¯ντ background. We have identified several limitations for such advanced telescopes, in comparison with the in-ice or in-water telescope, when measuring resonances: (i) a suppressed branching ratio of 11% for the decay Wτντ; (ii) the smearing effect and reduced acceptance because the daughter neutrino takes away y 75% of the energy from the W decay; and (iii) a large attenuation effect for Earth-skimming neutrinos with the resonance.

    HTML

    I.   INTRODUCTION
    • In 1959, even before the theoretical establishment of the Standard Model (SM), Glashow proposed the resonant scattering of high-energy antineutrinos on the electron target via the weak interaction [1], ¯νeeWanything. Almost sixty years later, the IceCube Observatory has finally identified such a candidate event with an energy deposition of Edep=6.05±0.72PeV [2], which is consistent with the resonance energy at Eν6.3PeV. The fact that the cross section of resonance is higher than that of deep inelastic scattering (DIS) by two orders of magnitude indicates that this event very likely arose from the Glashow resonance process, i.e., with a statistical significance at the2σ confidence level (CL).

      The observation of the Glashow resonance not only further strengthens the SM but also offers a promising way to distinguish between different astrophysical neutrino sources [323]. Even though the IceCube Observatory has accumulated hundreds of neutrino events with energies higher than 100TeV, which should be of astrophysical origin, the sources of those events are still largely unknown [2429]. These ultrahigh-energy (UHE) neutrinos are thought to be produced by the scattering of accelerated cosmic rays with ambient photons or baryons surrounding the source, which can lead to characteristic ¯νe fractions in the neutrino flux. With the help of the Glashow resonance, one can experimentally extract the ¯νe fraction at Earth by comparing the resonance events to those induced by other neutrinos. Recently, an analysis based on the candidate IceCube event has been conducted to infer the ¯νe fraction at Earth [22], and the sensitivities of next-generation in-ice and in-water Cherenkov telescopes have also been investigated [23].

      Another powerful category of UHE neutrino telescopes, which detects extensive air showers induced by tau decays [3042], is advancing (see Refs. [4346] for recent reviews). The tau flux detected is most efficiently produced through the charged-current (CC) conversion from tau neutrinos scattering off matter. Owing to the suitable decay length of tau particles above PeV energies, a large effective area can be achieved for neutrinos from PeV to ZeV depending on the specific layout of the telescope. A number of modern proposals concerning this direction offer an almost guaranteed discovery potential of cosmogenic tau neutrinos [4762]. In this regard, many theoretical studies have been performed to explore the particle physics potential of those facilities [18, 43, 6375]. Most of those telescopes optimize their sensitivities to the cosmogenic neutrino flux at EeV energies associated with the Greisen-Zatsepin-Kuzmin (GZK) cutoff structure of the cosmic ray spectrum [7678]. Their sensitivities usually decrease when probing lower energies because of the detection threshold and the smaller acceptance with a shorter tau decay length.

      An energy threshold down to O(PeV) can be achieved by deploying the particle detector array along one side of a deep valley to monitor the extensive air showers induced by tau decays from the other side, as in the Tau Air Shower Mountain-Based Observatory (TAMBO) [57]. TAMBO features the best sensitivity to tau neutrinos in the energy window from PeV to 100PeV [43]. A natural question arises: can this modern setup or other similar proposals (e.g., Ashra-NTA [61]) with a low energy threshold identify the Glashow resonance at Eν6.3PeV induced by ¯νe?

      The channel ¯νeeW¯νττ followed by the tau decay in the air opens up the possibility. Even though the branching ratio of W¯νττ is only 11%, the large cross section could in principle compensate for the suppression. Such facilities provide excellent angular resolution and could create unique opportunities to extract the ¯νe component even from the point source. The idea of observing the Glashow resonance in the tau neutrino telescope was first proposed by Fargion et al. [34, 35] and further addressed in Refs. [18, 23, 41, 48, 66] from various perspectives 1. In light of the increasing interest from the community and fruitful measurements on the neutrino flux, in this study, we follow a statistical framework to quantitatively analyze the discovery potential of the Glashow resonance in the air shower neutrino telescope.

      The rest of this paper is organized as follows. In Sec. II, we describe the framework that we use to calculate the event rates of the Glashow resonance induced by ¯νe as well as the normal ντ/¯ντ events in the air shower telescope. In Sec. III, we present the event rates and distributions for a telescope similar to the TAMBO setup and quantitatively compare the Glashow resonance signal to the ντ/¯ντ background. We draw our conclusions in Sec. IV.

    II.   CALCULATION FRAMEWORK
    • The detection mechanism with air shower techniques relies on the suitable decay length of tau, cττ50km(Eτ/EeV), enabling the tau flux to emerge from the matter surface and decay to form extensive air showers. The air shower can then be measured by detecting radio waves, Cherenkov light, fluorescence, or direct shower particles, and key technologies have been significantly developed and adopted in cosmic ray and gamma ray experiments. One typical example is TAMBO [57], for which the particle detection array will be deployed on one side of a deep valley (like a highly inclined AUGER [79]), containing 22000 water tanks separated by 150m each. By taking the valley length as 100km and the array width as 5km, the total geometric area of the telescope is as large as 500km2. The Colca Valley in Peru, which has sufficient depth and length, is an ideal site to host the proposed array. The array will overwatch the other side of the valley by directly measuring shower particles induced by taus emerging from the matter surface.

      The detection volume of the telescope depends not only on the geometric area of the telescope but also on the tau energy. Only those taus that propagate out of the Earth before they decay can be measured. Generally speaking, the higher the tau energy, the larger the effective volume for generating observable taus from the Earth. The attenuation effect will also come into play when the cross section, which increases with the tau energy, is too large. The actual detection volume would then be a joint result of the telescope geography, the tau energy, and the matter attenuation effect. For a deep-valley telescope, there are primarily four kinds of events that define the path the primary neutrino has traveled through (depending on the incoming direction of the tau particles): (1) only mountain; (2) only Earth; (3) Earth and mountain; (4) Earth, air, and then mountain. A sketch is given in Fig. 1 to show these four possibilities for the particle trajectory. The particles that have traveled through the vast volume of Earth are referred to as "Earth-skimming neutrinos." The attenuation effect for Earth-skimming neutrinos is much stronger than that for neutrinos only traveling through the mountain.

      Figure 1.  (color online) Schematic of the detection of neutrinos obtained by TAMBO. Four kinds of events in which incoming particles have traveled through different geographies are shown.

      For this study, we developed our own numerical program to generate the events. Other excellent codes that solve the propagation of leptons in matter are available for public use, such as nuSQuIDS [80], NuTauSim [81], NuPropEarth [82], nuPyProp [83], PROPOSAL [84] and, TauRunner [85, 86] . In our numerical calculation, we attempt to follow closely the configuration of TAMBO and simulate neutrino propagation and tau generation in matter. For the geography of the telescope, we adopt the cross sectional view in Fig. 5 of Ref. [57] and assume a valley length of 100km, which is required to achieve the proposed sensitivity of TAMBO. There are valleys such as the Colca Canyon in Peru and the Yarlung Tsangpo Grand Canyon in China that can provide the required valley length of about 100 km [87]. We further assume that the mountain is composed of the standard rock and the Earth follows the PREM profile [88]. We follow Ref. [84] for the properties of the standard rock. The neutrino fluxes including ντ/¯ντ and ¯νe are then injected isotropically. The propagation equations in matter incorporating the Glashow resonance process are expressed as

      ddt(dΦντ+¯ντdEν)=NAρ(σCC+σNC)dΦντ+¯ντdEν+NAρdEνdΦντ+¯ντdEν1EνdσNCdz|z=EνEν+NAρZABrWτ¯ντdEνdΦ¯νedEν1EνdσGRdz|z=EνEν+dEτdΦτdEτ1EτdΓτΓτdz,

      (1)

      ddt(dΦ¯νedEν)=NAρ(σCC+σNC+ZAσGR)dΦ¯νedEν+NAρdEνdΦ¯νedEν1EνdσNCdz|z=EνEν+NAρZABrWe¯νedEνdΦ¯νedEν1EνdσGRdz|z=EνEν,

      (2)

      ddt(dΦτdEτ)=ΓτdΦτdEτNAρAστdΦτdEτ+NAρAdEτdΦτdEτ1Eτdστdz+ρEτ(βτEτdΦτdEτ)+NAρdEνdΦντ+¯ντdEν1EνdσCCdz+NAρZABrWτ¯ντdEνdΦ¯νedEν1EνdσGRdy|y=EτEν,

      (3)

      where NA is the Avogadro constant; ρ is the matter density; Z is the atomic number; A is the mass number; σCC and σNC represent the DIS cross sections of the charged-current and neutral-current (NC) interactions, respectively; Γτ, στ, and βτ describe the decay and the attenuation of tau in matter; σGR represents the cross section of the Glashow resonance (which takes a Breit-Wigner form); and BrWτ¯ντBrWe¯νe11% are the branching ratios of the decay channels of interest. The differential cross section of the resonant scattering reads dσGR/dy=σGR3(1y)2, where yEτ/Eν is the energy fraction of the daughter tau taken from the primary neutrino [41]. The secondary νe and νμ from tau decays are not included in the above equations, which only have a subleading effect [85, 86, 89, 90].

      Owing to the angular momentum conservation, the average fraction of energy carried by the daughter tau from W is suppressed; specifically, y25% in comparison with y80% for the DIS CC interaction. This reduces the detection volume of the Glashow resonance by a factor of three, as compared to the normal tau neutrino events for the same primary neutrino energy. The detection volume is further reduced because of the large cross section (i.e., σmaxGR5×1031cm2), which corresponds to an attenuation length of LGR30km in the standard rock. Hence, the attenuation effect signficantly decreases the event number for the upward going Earth-skimming neutrinos, which traverse a distance much longer than LGR.

      By solving the propagation equations, one can obtain the tau flux emerging from the matter surface and then simulate their decays in the air. For simplicity, we assume that the detector will be triggered as long as the air shower axis intersects with the area covered by the array. This is a rather optimistic assumption, especially for less energetic neutrinos. In practice, one has to perform Monte-Carlo simulations for the development of extensive air showers and event registration in water tanks. The detector may not be triggered if the shower energy is too low. Nonetheless, our result presented here should be regarded as the most optimistic limit that may be reached by further improving the detection threshold. We will show later that it is still statistically difficult to identify the Glashow resonance in such an ideal case. Incorporating the practical shower simulation should further reduce the discovery potential.

      Using the framework above, we can first check the sensitivity of our nominal telescope to the diffuse neutrino flux. In Fig. 2, we show the acceptance (upper panel) and the sensitivity (lower panel) at the 90% CL for ντ/¯ντ (dark blue curves) via DIS and ¯νe (red curves) via the Glashow resonance based on our simulation. The sensitivity to the all-flavor neutrino flux is obtained by requiring the differential event number per energy decade to be greater than 2.44 for the 90% CL and assuming a democratic flavor composition along with νe:¯νe=0:1. For comparison, the dashed purple curve represents the acceptance and the corresponding sensitivity of the original TAMBO proposal to ντ/¯ντ [57]. The result of our ideal simulation is very similar to the TAMBO curve and starts to deviate significantly when the neutrino energy is below the PeV level. This deviation indicates that the energy threshold of TAMBO is important for EνO(PeV), above which the detector can accept tau events at almost full efficiency. The sensitivity to ¯νe with the Glashow resonance can exceed that to ντ/¯ντ in a narrow energy window around Eν6.3PeV. However, the actual event number from the Glashow resonance is subject to an integration over the input neutrino flux.

      Figure 2.  (color online) Acceptance (upper panel) and 10-year sensitivity (lower panel) of our nominal neutrino telescope to ντ/¯ντ (dark blue curves) via DIS and to ¯νe (red curves) via the Glashow resonance. This nominal setup closely follows the TAMBO proposal [57], of which the original acceptance and sensitivity to ντ/¯ντ are given in purple curves. In the upper panel, acceptances of IceCube to ντ/¯ντ and ¯νe are shown for comparison [24]. In the lower panel, several experimental results on the diffuse neutrino flux are given, including the measurements from the IceCube 7.5-year HESE data [27], 9.5-year northern sky track data [91], and one Glashow resonance candidate [2], as well as the limits from the IceCube [92] and AUGER [93] searches for cosmogenic neutrinos.

      For comparison, several existing results are shown: the IceCube sensitivity to ντ/¯ντ (solid black curve) and ¯νe (dashed black curve) via both DIS and the Glashow resonance [24], the IceCube measurements on the diffuse neutrino flux with 7.5-year HESE data (gray band) [27] and 9.5-year through-going track data (orange band) [91], the flux estimate from the IceCube Glashow resonance candidate (black error bar) [2], and the cosmogenic neutrino searches by IceCube (solid gray curve) [92] and AUGER (dashed gray curve) [93]. TAMBO's sensitivity to ντ/¯ντ is better than that of IceCube by more than one order of magnitude above O(10PeV). However, its sensitivity to ¯νe via the Glashow resonance is almost comparable to that of IceCube owing to the aforementioned suppression of the detection volume.

    III.   THE GLASHOW RESONANCE EVENTS
    • We continue with investigating the potential of air shower neutrino telescopes for detecting the Glashow resonance by comparing event numbers and distributions of both the signal and background. As has been mentioned, the major background signal comes from the irreducible tau neutrino events, which have the same event topology as the Glashow resonance signal in the air shower neutrino telescope. The only feasible way to identify the Glashow resonance seems to be statistically analyzing event distributions. Owing to neutrino oscillations, there will always be a comparable tau neutrino component no matter what the initial neutrino flavor ratio is at the source [94110]. For instance, the initial flavor ratios for the proton-proton (pp) and proton-photon (pγ) sources are both around νe+¯νe:νμ+¯νμ:ντ+¯ντ=1:2:0, which leads to a nearly democratic flavor composition 1:1:1 at Earth. In the following demonstrations, unless otherwise specified, the flavor ratio is set to 1:1:1 with an optimistic input νe:¯νe=0:1.

      In an in-ice or in-water Cherenkov telescope such as IceCube, the Glashow resonance stands out as a hadronic cascade with an energy deposition close to Edep6.3PeV. In the narrow energy window of interest, the background contribution from DIS is very low. However, this is not the case for the air shower neutrino telescope, which is designed to detect the tau lepton only. The resonance bump is largely smoothed out because of the wide spread of the tau energy from 0PeV to 6.3PeV. To see this explicitly, in Fig. 3 we show the energy (left panel) and angular (right panel) distributions of tau events in the telescope with ten years of exposure. The upper panels show the differential event distributions on a logarithmic scale and the lower ones give the event numbers collected in each bin. The red curves and regions depict the Glashow resonance events while the blue ones represent the tau neutrino events. For illustration, we have used as the input a power-law neutrino spectrum, which is expressed as

      Figure 3.  Event distributions (upper panels) and numbers (lower panels) in terms of the tau energy Eτ (left panel) and the incoming elevation angle α (right panel), assuming 10 years of data collection. The Glashow resonance and tau neutrino events are shown in red and blue, respectively. The power-law neutrino spectrum in Eq. (4) with Φ=4.32 and γ=2.28 was used as the input.

      dΦ6νdEν=Φ(Eν100TeV)γ1018GeV1cm2s1sr1,

      (4)

      with Φ=4.32 and γ=2.28 (i.e., the best-fit values of IceCube's 9.5-year track data [91]). The elevation angle in the right panel is defined as αθ90, where θ is the zenith angle of a neutrino's incoming direction, with the z-axis pointing upwards. Further remarks on Fig. 3 are made below.

      ● For the chosen flux parameters, the expectation number for the Glashow resonance events with 10 years of data collection was found to be NGR2.9, which is promising for observations if we could reject the background (i.e., tau neutrinos). The background event number shall be counted within a given region of interest (ROI). As shown in the left panel of Fig. 3, even though the resonance cross section features a very narrow width, the energy distribution of tau events spreads over a wide range. We found that the event number of the Glashow resonance peaked around Eτ2.2PeV with a large standard deviation in the energy of Δln(Eτ)ΔEτ/Eτ70%, corresponding to an energy interval of Eτ[1.1,4.5]PeV. This energy interval is suitable for consideration as the ROI in order to optimize the signal-to-background ratio: for a wider interval one may involve too many background events compared to the signal, while for a narrower interval the signal events may not be sufficiently taken into account.

      ● However, the angular distribution in the right panel motivates us to impose a α<2 cut to reduce the background. As we have mentioned, the Glashow resonance events for Earth-skimming neutrinos (α2) are strongly suppressed because of attenuation. The angular cut will reduce the background event number by approximately a factor of two, and the signal will be almost unchanged. After the angular cut, the background event number within the ROI turns out to be NDIS10 with a 1σ fluctuation of NDIS3.2, which is just comparable to NGR. This implies that the signal significance is only around the 1σ CL for the assumed flux input.

      ● In practice, the ROI choice is further limited by the energy resolution of taus in the telescope. For the TAMBO proposal, the target energy resolution is around ΔEτ/Eτ100% [57], which will contribute an additional smearing effect on top of the intrinsic energy spread.

      For the above example, we have fixed the flux normalization Φ and spectral index γ to be the best-fit values for IceCube track data. To be more general, we now set them as free parameters and perform the scanning. The event numbers of the signal and background in terms of Φ and γ are given in Fig. 4. In each panel, the parameter regions preferred by IceCube's HESE [27] and through-going track data [91] are shown as the solid contours (at the 2σ CL) and stars (best fits). To maximize the signal-to-background ratio, the angular cut α<2 has been imposed. For illustration, we have chosen three different ROIs for calculating the event numbers, including Eτ[0.5,9.2]PeV, [1.1,4.5]PeV, and [1.6,3.2]PeV(top, middle, and bottom panels, respectively), which correspond to multiplying the standard deviation of the tau energy distribution by a factor of two, one, and half, respectively. For a large fraction of the parameter space favored by HESE data, the event number of the Glashow resonance is small, NGR1. For the parameter space favored by track data, a larger event number can be obtained, but the ratio NGR/NDIS1 is not sufficient to claim that the signal is significant against the background.

      Figure 4.  (color online) Event numbers within different energy intervals through the Glashow resonance (left panels) and DIS (right panels), assuming 10 years of data collection. For comparison, the parameter regions preferred by IceCube's HESE and track data are shown as the solid contours (at the 2σ CL) and stars (best fits).

      When the flux normalization is too small or the spectrum is too soft, NDIS within the ROI can be of O(1), in which case NGR/NDIS is no longer a good estimate for the signal significance. To accommodate all cases, we treat the event fluctuation according to the Poisson distribution, for which the probability distribution function (PDF) follows PDFPoisson(n,μ)=eμμn/n!, where μ is the expectation value and n is the number of counts. The corresponding cumulative distribution function (CDF) is defined as CDFPoisson(n,μ)nk=0PDFPoisson(k,μ), and ¯CDFPoisson=1CDFPoisson is its complementary function. To define the discovery probability of the signal, we can perform a set of pseudo-experiments, and calculate the p-value that a fraction of pseudo-experiments can exclude the null (background-only) hypothesis. The p-value can be derived by solving [111]

      p=CDFPoisson(np,NDIS),¯CDFPoisson(np,NDIS+NGR)=q,

      (5)

      where np is the mock event number that can be observed by a fraction q of pseudo-experiments including both signal and background events. The median sensitivity corresponding to q=50% is assumed, so that p quantifies the significance that half of the pseudo-experiments can exclude the null hypothesis. For illustration, we have smoothed over the CDF by taking CDFPoisson(x,μ)=Γ(x+1,μ)/Γ(x+1) with xR, following Ref. [112].

      In the upper panels of Fig. 5, we show the p-value in terms of Φ and γ for the flavor composition νe+¯νe:νμ+¯νμ:ντ+¯ντ=1:1:1 consistent with meson-decay neutrino sources, with νe:¯νe=0:1. In each panel, the confidence levels of p=68% and 90% are indicated by the dashed contours. If the event number is completely consistent with the background-only hypothesis, then p50%. The significance that results after choosing Eτ[1.1,4.5]PeV was the best among the three ROI choices. However, a 90% CL cannot be achieved for the flux parameters constrained by the IceCube data. The largest p-value we found within the allowed region of neutrino flux was around 82%.

      Figure 5.  (color online) The p-value to exclude the null-signal hypothesis (DIS background only) with different energy intervals in the plane of Φ and γ, assuming an exposure of 10 years. In the upper and lower panels, the flavor ratio νe+¯νe:νμ+¯νμ:ντ+¯ντ at Earth has been taken as 1:1:1 (for meson decays) and 0.55:0.17:0.28 (for neutron decays), respectively.

      A more optimistic scenario is that the incoming tau neutrino component is suppressed. An example is the neutron-decay origin of UHE neutrinos, where only ¯νe is produced at the source, and after oscillations, one roughly obtains νe+¯νe:νμ+¯νμ:ντ+¯ντ=0.55:0.17:0.28 with νe:¯νe=0:1 at Earth [110]. In this scenario, the ¯νe flux is nearly twice that of the ντ+¯ντ flux. In the lower panels of Fig. 5, we show the p-value of the Glashow resonance discovery for the neutron-decay origin. A 90 % CL can be reached within the allowed region of the neutrino flux. However, the neutron-decay scenario is not favored as the dominant source of UHE neutrinos because of less energetic neutrinos in the final state.

    IV.   CONCLUDING REMARKS
    • In the air shower neutrino telescope, the major difficulty in extracting the Glashow resonance signal stems from the original tau neutrino events, which contribute an intrinsic background to the resonance events. Even though the Glashow resonance process can induce an observable event excess within an energy window, discriminating the Glashow resonance from the tau neutrino background is statistically challenging if UHE neutrinos primarily come from meson decays at the source. We have identified several factors that limit the discovery potential: (i) the small branching ratio of the decay Wτντ; (ii) the spreading energy distribution of the final-state tau as well as the sizable energy resolution; and (iii) the attenuation effect for upward going Earth-skimming neutrinos. Cosmic tau neutrinos remain the most cost-effective scientific target of the air shower neutrino telescope. Nevertheless, identifying the Glashow resonance is promising if UHE neutrinos are of the less likely neutron-decay origin or some new physics can come into play to suppress the tau neutrino component at Earth [99, 100, 113].

      Our result described above is more or less optimistic. In a more complete analysis, the neutrino flux input itself is uncertain and should be fitted by the data. The flux uncertainty will to some extent dilute the sensitivity to the bump induced by the Glashow resonance. In the TAMBO-like setup, to disentangle the flux uncertainty one may first fix the tau neutrino spectrum by using the Earth-skimming events (α0), and then use it to generate the background expectation for the horizontal (α0) events. The measurements gathered by other UHE neutrino telescopes can also be used as the input to further reduce the flux uncertainty. The TAMBO-like setup may be scaled up by deploying the arrays at multiple sites. The valleys that have been considered as the host for TAMBO include the Hells Canyon, Yarlung Tsangpo Grand Canyon, Cotahuasi Canyon, and Colca Canyon. Neglecting the cost budget, simply rescaling the length of the toy valley to1000km will enable a geometric area of 5000km2 to be achieved. With a sufficiently large ensemble of statistics, this will make the discrimination of the Glashow resonance possible (2σ CL) even for meson-decay neutrino sources.

    ACKNOWLEDGMENTS
    • The author would like to thank Ting Cheng, Sudip Jana and Nele Volmer for helpful comments and discussions.

Reference (113)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return