-
The basic assumption of nuclear structure is that nuclei with magic numbers are spherical [1−3]. When the number of valence nucleons increases, spherical vibrational excitation seems to appear inevitably for an even-even nucleus where the residual two-body interaction should appear [2]. This excitation exhibits a nearly equidistant spectrum created by the quadrupole phonon. At the two-phonon excitation level, there are three degenerate states with angular momentum
$ L=4,2,0 $ , whereas at the three-phonon level, there are five degenerate states with$ L=6,4,3,2,0 $ [4].The interacting boson model (IBM) provides a simple but effective method of studying the collectivity in nuclei [5−7]. Recently the extended interacting boson model with SU(3) higher-order interactions (SU3-IBM) was proposed [8], and one spherical-like γ-soft rotation was found in this model to explain the Cd puzzle [4, 9, 10]. The energy of the
$ 0_{3}^{+} $ state is nearly twice that of the$ 0_{2}^{+} $ state; hence, it does not appear near the$ 6^{+},4^{+},3^{+},2^{+} $ states. The$ 0_{3}^{+} $ state is expelled to a higher level (see the bottom graph of Fig. 2 in Ref. [11]).This new model can be considered an IBM realization of the SU(3) symmetry viewpoints adopted in the SU(3) shell models [12−20], some of which have been discussed with pseudo-SU(3) symmetry [21, 22]. Recently, proxy-SU(3) symmetry was found by Bonatsos et al. [23, 24], who investigated the prolate-oblate shape phase transition within only SU(3) symmetry. Higher-order interactions are needed in the IBM [25] to include triaxiality [26, 27]. SU(3) higher-order interactions are related to SU(3) mapping of the rigid triaxial rotor [28−30], which have been investigated to release the degeneracy of the β- and γ-bands in the SU(3) limit [31] and realize the rigid triaxial rotor [32, 33].
The spherical-like spectra in the Cd puzzle [4, 9, 10] have only been found in this SU3-IBM [8]. The B(E2) anomaly can only be explained by the SU3-IBM [34−36], which can not be described by other nuclear theories [37−40] or O(6) symmetry [41]. The prolate-oblate shape phase transition was also found to evolve with an asymmetric way in this model, which is more consistent with the evolution of actual nuclei in the Hf-Hg region [42]. This model can also explain the energy spectra of
$ ^{196} $ Pt at a better level [11, 43] as well as$ ^{82} $ Kr [44]. The SU3-IBM describes the oblate shape with the SU(3) third-order Casimir operator [45, 46], which predicts a boson number odd-even effect [46]. This effect was recently found in$ ^{196-204} $ Hg, which conclusively proves the validity of this new model [47].Recently, Otsuka et al. argued that nuclei previously thought to be prolate ellipsoid, such as
$ ^{166} $ Er, are actually of a triaxial shape [1, 48−50]. This result is attractive and supports the SU3-IBM because it can easily handle triaxial deformations.It is necessary to further investigate the Cd puzzle [4, 9, 10] using the SU3-IBM. In a previous paper [8], only the SU(3) second-order and third-order Casimir operators were considered. In this study, we further investigate other higher-order interactions to explain the near zero B(E2) values between the
$ 0_{2}^{+} $ and$ 2_{1}^{+} $ states. The coupling strength between the normal and intruder states in$ ^{108-116} $ Cd is weak [51]. However, for$ ^{118,120} $ Cd, we find that the coupling between the normal and intruder states can be ignored. Thus, the spectra in$ ^{118,120} $ Cd can be explained without the calculation of configuration mixing (see Table 1). Similar spherical-like spectra may also be found in Pd nuclei [52, 53]. Finally, for the first time, the anomalous evolutional behavior of the quadrupole moments of the$ 2_{1}^{+} $ state in$ ^{108-116} $ Cd can be discussed via the theory, implying that the discussions are meaningful.Cd nuclei Coupling strength Configuration mixing $ ^{108-116} $ Cdweak needed $ ^{118,120} $ Cdignored no Table 1. Main viewpoints adopted in this study.
The Cd puzzle has also been studied from other perspectives [54−57], in which the normal states of Cd nuclei were not regarded as a new collective mode. The properties of Cd nuclei were also discussed in [58, 59], which provides a reasonable qualitative description of the experimental energy levels and transition rates.
-
The Hamiltonian in the SU3-IBM has been discussed in Ref. [8, 34, 35, 42, 44]. In a previous paper, except for the d boson number operator
$ \hat{n}_{d} $ , only the SU(3) second-order and third-order Casimir operators$ -\hat{C}_{2}[SU(3)] $ and$ \hat{C}_{3}[SU(3)] $ were considered to explain the normal states of$ ^{110} $ Cd [8]. When other SU(3) higher-order interactions are added, the Hamiltonian is as follows [11]:$ \begin{aligned}[b] \hat{H}=\;&c\Bigg\{\hat{n}_{d}+\eta\Bigg[-\frac{\hat{C}_{2}[SU(3)]}{2N}+\alpha\frac{\hat{C}_{3}[SU(3)]}{2N^{2}} \\ &+\beta\frac{\hat{C}_{2}^{2}[SU(3)]}{2N^{3}}+\gamma\frac{\Omega}{2N^{2}}+\delta\frac{\Lambda}{2N^{3}}\Bigg]\Bigg\}, \end{aligned} $
(1) where c, η, α, β, γ, and δ are fitting parameters,
$ \hat{Q} $ is the SU(3) quadrupole operator,$ \Omega $ is$ [\hat{L}\times \hat{Q} \times \hat{L}]^{(0)} $ , and$ \Lambda $ is$ [(\hat{L}\times \hat{Q})^{(1)} \times (\hat{L} \times \hat{Q})^{(1)}]^{(0)} $ . The latter two quantities result from SU(3) mapping of the rigid triaxial rotor [32, 33].$ -\hat{C}_{2}[SU(3)] $ ,$ \hat{C}_{3}[SU(3)] $ , and$ -\hat{C}_{2}^{2}[SU(3)] $ can make any SU(3) irreducible representation$ (\lambda,\mu) $ become the ground state in the SU(3) limit. The study of the SU3-IBM revealed that higher-order interactions are essential for describing the rotor rotation; however, many researchers have ignored them to date. This also makes the IBM useful in understanding some collective behaviors.The two SU(3) Casimir operators are related to the quadrupole second or third-order interactions in the SU(3) limit as follows:
$ \begin{aligned} \hat{C}_{2}[ {{SU(3)}}]=2\hat{Q}\cdot\hat{Q}+\frac{3}{4}\hat{L}\cdot\hat{L}, \end{aligned} $
(2) $ \begin{aligned}[b] \hat{C}_{3}[ {{SU(3)}}]=\;&-\frac{4}{9}\sqrt{35}[\hat{Q}\times\hat{Q}\times\hat{Q}]^{(0)}\\ &-\frac{\sqrt{15}}{2}[\hat{L}\times\hat{Q}\times\hat{L}]^{(0)}. \end{aligned} $
(3) For a given SU(3) irreducible representation
$ (\lambda,\mu) $ , the eigenvalues of the two Casimir operators under the group chain$ U(6) \supset SU(3) \supset O(3) $ are expressed as$ \begin{aligned} \hat{C}_{2}[ {{SU(3)}}]=\lambda^{2}+\mu^{2}+\mu\lambda+3\lambda+3\mu, \end{aligned} $
(4) $ \begin{aligned} \hat{C}_{3}[ {{SU(3)}}]=\frac{1}{9}(\lambda-\mu)(2\lambda+\mu+3)(\lambda+2\mu+3). \end{aligned} $
(5) In a previous paper, only the
$ -\hat{C}_{2}[SU(3)] $ and$ \hat{C}_{3}[SU(3)] $ were considered.$ -\hat{C}_{2}[SU(3)] $ describes the prolate shape, which has been known for many years, and$ \hat{C}_{3}(SU(3)) $ describes the oblate shape, which was only recently taken seriously from Ref. [45]. In Ref. [46], the prolate-oblate shape phase transition from$ -\hat{C}_{2}(SU(3)) $ to$ \hat{C}_{3}[SU(3)] $ was first discussed. Recently, when$ \hat{n}_{d} $ was introduced, the asymmetric shape transition was studied in the Hf-Hg region [42], which provided a solid experimental basis for the validity of the SU3-IBM.In the SU(3) description of the rigid triaxial rotor, the other SU(3) higher-order interactions are requisite [32, 33]. Recently, it was also found that explaining the B(E2) anomaly needs the introduction of other SU(3) higher-order interactions [34−36].
From
$ -\hat{C}_{2}[SU(3)] $ to$ \hat{C}_{3}[SU(3)] $ , there is a degenerate point for the SU(3) irreducible representation$ (\lambda,\mu) $ satisfying the condition$ \lambda+2\mu=2N $ , which is also the shape phase transition point from the prolate shape to the oblate shape. Here, N is the boson number. The degenerate point is at$ \alpha=\dfrac{3N}{2N+3} $ . For the transitional region from the U(5) limit to the SU(3) degenerate point, degeneracy between the$ 4_{1}^{+} $ and$ 2_{2}^{+} $ states can be found [8], which is a typical feature of γ-softness. Several other higher levels can also be degenerate. However, the reason for this degeneracy is still unknown. The key finding is that the middle positions of the transition region can exhibit spherical-like spectra for the explanation of the normal states of Cd nuclei.Adding the
$ \hat{C}_{3}(SU(3)) $ interaction has already described the spherical-like mode; however, other SU(3) higher-order interactions are necessary when additional details and configuration mixing are considered. Thus, in this study, the influences of other SU(3) higher-order interactions are investigated at a perturbation level, which are also important for understanding other nuclei with the spherical nucleus puzzle, such as Te and Pd nuclei [4].To better understand various types of γ-softness,
$ B(E2) $ values are also necessary. The method of distinguishing the different types of γ-softness becomes more important in the investigation of realistic nucleus properties. The$ E2 $ operator is defined as$ \begin{aligned} \hat{T}(E2)=e\hat{Q}, \end{aligned} $
(6) where e is the boson effective charge. The evolution of the
$ B(E2; 2_{1}^{+}\rightarrow 0_{1}^{+}) $ ,$ B(E2; 0_{2}^{+}\rightarrow 2_{1}^{+}) $ ,$ B(E2; 0_{2}^{+}\rightarrow 2_{2}^{+}) $ ,$ B(E2; 0_{3}^{+}\rightarrow 2_{1}^{+}) $ , and$ B(E2; 0_{3}^{+}\rightarrow 2_{2}^{+}) $ values are discussed for various parameters. -
Previous conclusions are used to fit
$ ^{108-120} $ Cd. From Fig. 11, when$ \eta=1.0 $ ,$ \alpha=1.235 $ ,$ \beta=0.0 $ ,$ \gamma=-2.0 $ , and$ \delta=-4.0 $ , we can achieve our aim. As shown, spherical-like spectra clearly exist (top graph), and the B(E2) values from the$ 0_{2}^{+} $ to$ 2_{1}^{+} $ states can be small (bottom graph). However, from Fig. 13, we know that the magnitude of the parameter γ cannot be large. Thus, for all Cd isotopes, we focus on the position$ \eta=1.0 $ and$\alpha={3N}/({2N+3})$ , which is the middle point of the transitional region from the U(5) limit to the SU(3) degenerate point and the typical position of spherical-like spectra [8]. The boson numbers of$ ^{108-120} $ Cd are N = 6, 7, 8, 9, 8, 7, and 6, respectively. It is interesting that the parameters$ \beta=0.0 $ ,$ \gamma=-0.5 $ , and$ \delta=-8.0 $ are also the same for all Cd isotopes. The magnitude of the parameter γ is reduced from –2.0 to –0.5 to ensure the existence of the negative$ Q_{2_{1}^{+}} $ value and reduce the B(E2) values from the$ 0_{2}^{+} $ to$ 2_{1}^{+} $ state. The parameter$ \delta=-8.0 $ reveals spherical-like spectra at a good level, and the$ \hat{C}_{2}^{2}[SU(3)] $ interaction is not needed here. We let the energy of the$ 2_{1}^{+} $ state be the same as the experimental value and choose the fitting parameters c with 688.64, 829.76, 887.39, 902.9, 738.17, 615.38, and 550.48 keV for$ ^{108-120} $ Cd. These results exhibit specific regularity. Figs. 14−20 show the low-lying levels of$ ^{108-120} $ Cd compared with the experimental data [71]. The general features of the energy levels fit well. It should be stressed that there is no$ 0_{3}^{+} $ state at the energy position of the previous three phonon level. The energies of the$ 0_{2}^{+} $ states are somewhat smaller than the experimental values, whereas the high-spin states are somewhat larger. The fitting effect of$ ^{118,120} $ Cd appears to be better than that of the lighter ones because the coupling between the normal and intruder states can be ignored for the two nuclei and the normal states are simply those of the spherical-like γ-soft model.Some deficiencies also require further analysis. It is hoped that the fitting effect can be further improved when configuration mixing is considered in the next study. In this study, a single Hamiltonian is used to fit the entire
$ ^{108-120} $ Cd. This verifies the SU3-IBM but also results in insufficient fitting of some of the levels. We believe that this consequence is justifiable. In further fitting, the parameters will be adjusted more correctly. For$ ^{108-118} $ Cd, the calculated ground-band and γ-band are systematically stretched compared to the observed ones. Considering$ ^{120} $ Cd, this phenomenon is not severe; therefore, we believe that these bands would be more consistent with the experimental results when configuration mixing is considered. We expect this to be confirmed by the latter fitting. Interestingly, the fitting also does not account for the inverted energy levels of the$ 3_{1}^{+} $ and$ 4_{2}^{+} $ states in$ ^{118,120} $ Cd. Note that in$ ^{106} $ Pd, the two levels are normal [52, 53]. The inversion phenomenon will be further discussed in future via careful adjustment of the parameters.The absolute B(E2) values for E2 transitions from the low-lying normal states of
$ ^{108-120} $ Cd are shown in Tables 2−8, revealing that the fitting effects are still good. The key quantity is the B(E2) value between the$ 0_{2}^{+} $ and$ 2_{1}^{+} $ states. In a previous paper [8], without other SU(3) higher-order interactions, this value was 12.2 W.u for$ ^{110} $ Cd, whereas in this study, it is 4.14 W.u.. For$ ^{112,114} $ Cd, these values are nearly zero, whereas for$ ^{116} $ Cd, it is 0.79 W.u. and larger than those of lighter ones. For$ ^{118} $ Cd, the value is 5.3 W.u. (see also Fig. 3). The theoretical fitting result is 5.07 W.u., which fits well (see Table 7). This is the target result of the second paper, and its emergence brings about consistency between theory and experiments. Thus, it can be suggested that the near zero values of$ ^{112,114} $ Cd and the small value of$ ^{116} $ Cd may arise from configuration mixing between the normal and intruder states. This will be discussed in a future paper.B(E2) Exp. Theory B(E2) Exp. Theory 2 $ _{1}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 26.6(3) 26.6 4 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 41(6) 31.86 2 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 17(5) 38.89 2 $ _{2}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 1.8(3) 1.02 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 4.04 2 $ _{3}^{+} $ $ \rightarrow $ 0$ _{2}^{+} $ 18.89 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 4.07 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 90.41 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 27.83 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{2}^{+} $ 0.31 2 $ _{3}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 0.13 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 1.02 4 $ _{2}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 14.79 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 2.39 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 25.44 3 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 18.83 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.41 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 20.61 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.026 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.2 $ Q_{2^{+}_{1}} $ -0.45 -0.086 Table 2. Absolute B(E2) values in W.u. for
$ E2 $ transitions from the low-lying normal states of$ ^{108} $ Cd with effective charge$ e=1.78 $ (W.u.)$ ^{1/2} $ . The last row is the$ Q_{2_{1}^{+}} $ value in eb.B(E2) Exp. Theory B(E2) Exp. Theory 2 $ _{1}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 27.0(8) 27 4 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 42(9) 33.99 2 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 30(5) 39.85 2 $ _{2}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 1.35(20) 0.95 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.7 $ _{-0.6}^{+0.5} $ 3.55 2 $ _{3}^{+} $ $ \rightarrow $ 0$ _{2}^{+} $ 24.2(22) 20.17 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ $ < $ 7.94.14 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ $< $ 1680$ ^{a} $ 84.05 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 40(30) 35.512 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{2}^{+} $ $< $ 5$ ^{a} $ 0.33 2 $ _{3}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ $< $ 5$ ^{a} $ 0.3 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 2.8 $ _{-1.0}^{+0.6} $ 0.71 4 $ _{2}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 12 $ _{-6.0}^{+4.0} $ 16.13 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.2 $ _{-0.09}^{+0.06} $ 2.02 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 32 $ _{-14}^{+10} $ 26.59 3 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 5.9 $ _{-4.6}^{+1.8} $ 18.67 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 1.1 $ _{-0.8}^{+1.3} $ 0.47 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 38 $ _{-24}^{+8} $ 23.50 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.072 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.13 $ Q_{2^{+}_{1}} $ -0.40 -0.076 Table 3. Absolute B(E2) values in W.u. for
$ E2 $ transitions from the low-lying normal states of$ ^{110} $ Cd with effective charge$ e=1.59 $ (W.u.)$ ^{1/2} $ . The last row is the$ Q_{2_{1}^{+}} $ value in eb.B(E2) Exp. Theory B(E2) Exp. Theory 2 $ _{1}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 30.31(19) 30.31 4 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 63(8) 39.47 2 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 39(7) 45.31 2 $ _{2}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 0.65(11) 1.166 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 3.42 2 $ _{3}^{+} $ $ \rightarrow $ 0$ _{2}^{+} $ 25(7) 23.23 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.0121(17) 4.04 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 99(16) 91.38 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 39.96 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{2}^{+} $ 0.477 2 $ _{3}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 0.456 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 2.2(6) 0.65 4 $ _{2}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 24(8) 19.26 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.9(3) 1.85 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 58(17) 30.85 3 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 25(8) 20.59 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 1.8(5) 0.70 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 64(18) 28.21 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.164 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.093 $ Q_{2^{+}_{1}} $ -0.38 -0.045 Table 4. Absolute B(E2) values in W.u. for
$ E2 $ transitions from the low-lying normal states of$ ^{112} $ Cd with effective charge$ e=1.53 $ (W.u.)$ ^{1/2} $ . The last row is the$ Q_{2_{1}^{+}} $ value in eb.B(E2) Exp. Theory B(E2) Exp. Theory 2 $ _{1}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 31.1(19) 31.1 4 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 62(4) 41.39 2 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 22(6) 44.72 2 $ _{2}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 0.48(6) 1.72 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ $ < $ 1.93.14 2 $ _{3}^{+} $ $ \rightarrow $ 0$ _{2}^{+} $ 17 24.51 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.0026(4) 3.65 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 127(16) 89.58 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 119(15) 43.54 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{2}^{+} $ 0.56 2 $ _{3}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 0.54 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.53 4 $ _{2}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 20.39 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 1.60 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 31.92 3 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 20.99 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.88 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 30.72 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.21 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.059 $ Q_{2^{+}_{1}} $ -0.35 -0.018 Table 5. Absolute B(E2) values in W.u. for
$ E2 $ transitions from the low-lying normal states of$ ^{114} $ Cd with effective charge$ e=1.41 $ (W.u.)$ ^{1/2} $ . The last row is the$ Q_{2_{1}^{+}} $ value in eb.B(E2) Exp. Theory B(E2) Exp. Theory 2 $ _{1}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 33.5(12) 33.5 4 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 56(14) 43.63 2 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 25(10) 50.08 2 $ _{2}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 1.11(18) 1.29 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 3.80 2 $ _{3}^{+} $ $ \rightarrow $ 0$ _{2}^{+} $ 25.68 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.79(22) 4.47 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 3.0 $ \times $ 10$ ^{4} $ (8)101 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 1.1 $ \times $ 10$ ^{2} $ $ _{-8}^{+4} $ 44.17 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{2}^{+} $ 0.53 2 $ _{3}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 0.5 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.72 4 $ _{2}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 21.28 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 2.04 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 34.07 3 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 22.76 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.775 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 31.18 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.181 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.103 $ Q_{2^{+}_{1}} $ -0.42 -0.049 Table 6. Absolute B(E2) values in W.u. for
$ E2 $ transitions from the low-lying normal states of$ ^{116} $ Cd with effective charge$ e=1.61 $ (W.u.)$ ^{1/2} $ . The last row is the$ Q_{2_{1}^{+}} $ value in eb.B(E2) Exp. Theory B(E2) Exp. Theory 2 $ _{1}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 8.37 4 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 10.02 2 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 12.23 2 $ _{2}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 0.32 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 1.27 2 $ _{3}^{+} $ $ \rightarrow $ 0$ _{2}^{+} $ 5.94 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 1.28 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 28.43 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 8.75 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{2}^{+} $ 0.01 2 $ _{3}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 0.04 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.325 4 $ _{2}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 4.65 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.75 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 80 3 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 5.92 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.13 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 6.48 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.0083 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.064 $ Q_{2^{+}_{1}} $ -0.052 Table 8. Absolute B(E2) values in W.u. for
$ E2 $ transitions from the low-lying normal states of$ ^{120} $ Cd with effective charge$ e=1.0 $ (W.u.)$ ^{1/2} $ . The last row is the$ Q_{2_{1}^{+}} $ value in eb.B(E2) Exp. Theory B(E2) Exp. Theory 2 $ _{1}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 33(3) 33 4 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ $ > $ 6141.61 2 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 48.8 2 $ _{2}^{+} $ $ \rightarrow $ 0$ _{1}^{+} $ 1.16 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 4.35 2 $ _{3}^{+} $ $ \rightarrow $ 0$ _{2}^{+} $ 24.69 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 5.3(8) 5.07 0 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 102.9 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 39.84 6 $ _{1}^{+} $ $ \rightarrow $ 4$ _{2}^{+} $ 0.40 2 $ _{3}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 0.37 2 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.87 4 $ _{2}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 19.75 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 2.49 4 $ _{2}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 32.56 3 $ _{1}^{+} $ $ \rightarrow $ 4$ _{1}^{+} $ 22.86 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.57 3 $ _{1}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 28.77 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{1}^{+} $ 0.087 0 $ _{3}^{+} $ $ \rightarrow $ 2$ _{2}^{+} $ 0.16 $ Q_{2^{+}_{1}} $ -0.089 Table 7. Absolute B(E2) values in W.u. for
$ E2 $ transitions from the low-lying normal states of$ ^{118} $ Cd with effective charge$ e=1.76 $ (W.u.)$ ^{1/2} $ . The last row is the$ Q_{2_{1}^{+}} $ value in eb.Note that the theoretical values
$ Q_{2_{1}^{+}} $ in$ ^{108-116} $ Cd are considerably smaller than the experimental data. In the previous analysis, we find that the coupling between the normal and intruder states in$ ^{118,120} $ Cd can be ignored (this is also supported by Ref. [70]). Therefore, the deviation in the$ Q_{2_{1}^{+}} $ values in$ ^{108-116} $ Cd may result from configuration mixing. The first intruder states in$ ^{114} $ Cd are the lowest among all Cd isotopes; hence, their theoretical values$ Q_{2_{1}^{+}} $ have the largest deviation from the experimental value. In this case, the experimental values$ Q_{2_{1}^{+}} $ in$ ^{118,120} $ Cd can be predicted at around –0.09 eb, which is considerably smaller than the values for$ ^{108-116} $ Cd. We strongly suggest that future experiments measure this value and, if this is the case, prove the validity of the SU3-IBM.The top graph of Fig. 21 shows the evolutional behaviors of the
$ Q_{2_{1}^{+}} $ values in Te, Pd, Cd, Ru, and Xe nuclei. Clearly, the evolutional trends in$ ^{108-116} $ Cd are different from the neighbouring ones and decrease as N increases. This is an anomalous phenomenon. (To the best of our knowledge, this anomaly is mentioned for the first time in this paper.) Although these theoretical$ Q_{2_{1}^{+}} $ values are significantly smaller than the experimental values, they reproduce the anomalous trend (see the bottom graph of Fig. 21). The differences arise from configuration mixing. This result indicates that both our hypothesis and results are reasonable.Figure 21. (color online) Top: Evolutional behaviors of the experimental
$ Q_{2_{1}^{+}} $ values in Te, Pd, Cd, Ru, and Xe nuclei [71]. Bottom: Evolutional behaviors of the theoretical (red) and experimental (black) results for$ ^{108-116} $ Cd.The theoretical fitting and practical situation are consistent, and the deficiency originates from not considering configuration mixing. For
$ ^{108-116} $ Cd, the coupling effect, although weak, must be considered, and the resulting deficiency is clear. For$ ^{118,120} $ Cd, the fitting is very reasonable, indicating that the coupling between the normal and intruder states can be ignored. We look forward to more experimental studies on$ ^{118,120} $ Cd.The energy level feature of a nearby nucleus
$ ^{106} $ Pd is found to also possess both of these features. The$ 0_{3}^{+} $ state is found to be an intruder state [52], such that the$ 0_{4}^{+} $ state is in fact the third$ 0^{+} $ state of the normal states [53], and its energy is 1.77 times than that of$ 0_{2}^{+} $ state (see Fig. 6 in Ref.[53]). The energy level feature at the four phonon level in the spherical-like spectra can be verified, which will be discussed in future. In this study, we show that the new spherical-like γ-soft mode can be found in the normal states of$ ^{118,120} $ Cd.
Spherical-like spectra for the description of the normal states of 108-120Cd in the SU3-IBM and the $ {{\boldsymbol Q}_{\bf 2_{1}^{\bf +}}} $ anomaly
- Received Date: 2024-08-14
- Available Online: 2025-01-15
Abstract: The Cd puzzle implies that the phonon excitation of a spherical nucleus should be questioned and refuted. To understand the newly and experimentally discovered spherical-like γ-soft mode, the SU3-IBM was recently proposed. In this study, the evolutions of the normal states in