-
The curvature squared corrections to the solution of the
$ AdS_5 $ -Schwarzschild black brane can be described by the general action [23, 24]$ \begin{aligned}[b] S = \;&\frac{1}{16\pi G_5}\int {\rm d}^5\times \sqrt{-g}\times \left[\mathcal{R}-\Lambda+L^2\left(c_1 \mathcal{R}^2+c_2\mathcal{R}_{\mu\nu}\mathcal{R}^{\mu\nu}\right.\right.\\ & \left.\left.+c_3 \mathcal{R}_{\mu\nu\rho\sigma}\mathcal{R}^{\mu\nu\rho\sigma}\right)\right], \end{aligned} $
(1) where
$ G_5=\pi L^3/2N_c^2 $ is a 5-dimensional Newton constant,$ \mathcal{R} $ is the Ricci scalar, and$ \mathcal{R}_{\mu\nu} $ and$ \mathcal{R}_{\mu\nu\rho\sigma} $ are the Ricci and Riemann tensors, respectively. The negative cosmological constant$ \Lambda=-\dfrac{12}{L^2} $ creates an$ AdS $ space with radius L. The parameters$ c_i $ are expected to be of$ o(\alpha') $ , which means that$ c_i=0 $ in the limit of large 't Hooft coupling ($ \lambda\rightarrow \infty $ ). The shear viscosity to entropy ratio was found in [22, 46] to be$ \dfrac{\eta}{s}=\dfrac{1}{4\pi}(1-8c_3)+\mathcal{O}(c_i^2) $ , and the viscosity bound is violated when$ c_3 > 0 $ .The black brane solution of the
$ AdS_5 $ space for Eq. (1) is given by [22]$ {\rm d} s^2=-\left(\frac{r^2}{L^2}\right)f(r){\rm d}t^2+ \left(\frac{r^2}{L^2}\right){\rm d}\vec{x}^{\,2}+\frac{L^2}{r^2f(r)}{\rm d}r^2, $
(2) where
$ f(r)=1-\frac{r_0^4}{r^4}+a+b \frac{r_0^8}{r^8}, $
(3) $ a=\frac{2}{3} \left( 10c_1 + 2c_2 +c_3 \right),~~~ b=2c_3. $
(4) The boundary of the asymptotically AdS geometry is located at
$ r\rightarrow \infty $ , where r denotes the 5-dimensional radial coordinate, and$ (t, \vec{x}) $ labels the left 4-dimensional spacetime of the gauge theory on the boundary. One can solve$ f(r_h)=0 $ to find the location of the horizon$ r = r_h $ , where$ r_h $ depends on a, b, and$ r_0 $ . The heat bath temperature is given by$ T_{R^2}=\frac{r_0}{\pi L^2} \left( 1+ \frac{1}{4} a - \frac{5}{4} b\right) , $
(5) where
$ r_0 $ depends on both a and b for a fixed temperature$ T_{R^2} $ .According to [17, 47, 48], we computed the LGV-coefficients of a heavy quark in a squared-curvature correction background. It is more convenient to conduct the calculations in a more general form:
$ {\rm d}s^2=g_{tt}{\rm d}t^2+g_{ii}{\rm d}x_i^2+g_{rr}{\rm d}r^2. $
(6) According to Eq. (2), we have
$ g_{tt}=-\left(\frac{r^2}{L^2}\right)f(r), \quad g_{ii}=\frac{r^2}{L^2}, \quad g_{rr}=\frac{L^2}{r^2f(r)}. $
(7) Holographically, the moving heavy quark of infinite mass on the boundary CFT corresponds to the endpoint of the trailing string. The string dynamics are captured by the Nambu-Goto action:
$ S_{NG}=-\frac{1}{2\pi\alpha'}\int \mathrm{d}\tau \mathrm{d}\sigma \sqrt{-\mathrm{det} \gamma_{\alpha\beta}}, \qquad \gamma_{\alpha\beta}=g_{\mu\nu}\partial_\alpha X^{\mu} \partial_\beta X^{\nu}. $
(8) where
$ \gamma_{\alpha\beta} $ is the induced metric, and$ g_{\mu\nu} $ and$ X^{\mu} $ are the branes metric and target space coordinates.Given a moving heavy quark with a constant velocity v on the boundary along the chosen direction
$ x_{p}(x_p= x,y,z) $ , one can choose to compute in static gauge for the string world-sheet with the usual parametrization,$ t=\tau, \quad r=\sigma,\quad x=vt+\xi(r), $
(9) where ξ is the profile of the string in the bulk. The world-sheet metric is deduced to be
$ \gamma_{\alpha\beta}= \left( \begin{matrix} g_{tt}+v^2g_{pp} & g_{pp}v\xi' \\ g_{pp}v\xi' & g_{rr}+g_{pp}\xi^{'2} \end{matrix} \right), $
(10) and the corresponding action is
$ S_{NG}=-\frac{1}{2\pi\alpha'}\int \mathrm{d}t \mathrm{d}r \sqrt{-(g_{tt}g_{rr}+g_{tt}g_{pp}\xi'^2+g_{pp}g_{rr}v^2)}. $
(11) Note that
$ g_{pp} $ is the corresponding metric component in the$ x_{p} $ direction. It is evident that the radial conjugate momentum$ \pi_{\xi} $ is conserved for the simple motion:$ \pi_{\xi}=\frac{\delta S}{\delta \xi}=-\frac{1}{2\pi\alpha'}\frac{g_{tt}g_{pp} \xi'}{2\sqrt{-(g_{tt}g_{rr}+g_{tt}g_{pp}\xi'^2+g_{pp}g_{rr}v^2)}}. $
(12) It is easy to find
$ \xi' $ from Eq. (12) as$ \xi'=\sqrt{\frac{-g_{tt}g_{rr}-g_{pp}g_{rr}v^2}{g_{tt}g_{xx}(1+\frac{g_{tt}g_{xx}}{C^2})}}, $
(13) where
$ C\equiv 2\pi\alpha'\pi_{\xi} $ . The world-sheet of the string has a horizon that turns out to be the same with critical point$ r_c $ at which both numerator and denominator change their sign. By inserting Eq. (7) into$ \gamma_{\alpha\alpha}(r_c) = 0 $ , one can identify the critical point$ r_c $ as$ r_c=\sqrt[4]{\frac{r_0^4 \sqrt{1-4 b \left(a-v^2+1\right)}+r_0^4}{2 \left(a-v^2+1\right)}}. $
(14) One can also find the effective temperature
$ T_{ws} $ of the world-sheet horizon by diagonalizing the world-sheet metric expressed by Eq. (10). One can change coordinates to diagonalize the induced metric via the following reparametrization:$ {\rm d}\tau\rightarrow {\rm d}\tau-\frac{\gamma_{\alpha\beta}}{\gamma_{\alpha\alpha}}{\rm d}\sigma. $
(15) The diagonal induced world-sheet metric
$ h_{\alpha\beta} $ is given by$ h_{\alpha\beta}= \left( \begin{matrix} g_{tt}+g_{pp}v^2 & \\ & \dfrac{g_{tt}g_{pp}g_{rr}}{g_{tt}g_{pp}+ \left(2\pi\alpha'\pi_{\xi} \right)^2} \end{matrix} \right). $
(16) Following the usual procedure, the effective world sheet temperature reads
$ \begin{split} T^{2}_{ws}\;&=\frac{1}{16\pi^2}\left(h_{\alpha\alpha}'\,\left(h^{\beta\beta}\right)'\right)\bigg|_{r_c}\\ &=\frac{1}{16\pi^2}\left[(g_{tt}+v^2g_{pp})'\left(\frac{g_{tt}g_{pp}+v^2(g_{pp}|_{r_c})^2}{g_{tt}g_{pp}g_{uu}}\right)'\right]^2\bigg|_{r=r_{c}}\\ &=\frac{1}{16\pi^2}\left| {\frac{g^{'2}_{tt}-v^4g^{'2}_{pp}}{g_{tt}g_{pp}}} \right|\bigg|_{r=r_{c}}\\ &=\frac{1}{16\pi^2}\left| {\frac{1}{g_{tt}g_{rr}}(g_{tt}g_{pp})'\left(\frac{g_{tt}}{g_{pp}}\right)'} \right|\bigg|_{r=r_{c}}.\\[-1pt] \end{split} $
(17) By inserting Eq. (14) into Eq. (17), one has the effective world sheet temperature
$ T^{ws}_{R^2} $ :$ \begin{aligned} T^{ws}_{R^2}=\frac{1}{4\pi}\sqrt{\left| {\left(\frac{8 b r_0^8}{r_c^9}-\frac{4 r_0^4}{r_c^5}\right) \left(4 r_c^3 \left(a+\frac{b r_0^8}{r_c^8}-\frac{r_0^4}{r_c^4}+1\right)+r_c^4 \left(\frac{4 r_0^4}{r_c^5}-\frac{8 b r_0^8}{r_c^9}\right)\right)} \right|}. \end{aligned} $
(18) In the conformal limit, where
$ a\rightarrow 0,\,b\rightarrow 0 $ , the background solution reduces to AdS-BH, and the world-sheet temperature expressed by Eq. (18) is simply related to the bulk temperature:$ \lim\limits_{a\rightarrow 0,b\rightarrow 0}T^{ws}_{R2}=\frac{T_{\text{SYM}}}{\sqrt{\gamma_v}}, $
(19) where
$ \gamma_v $ is the Lorentz factor$ \gamma_v=1/\sqrt{1-v^2} $ and$ T_{\text{SYM}} $ is the bulk temperature in the conformal limit.Considering the fluctuation in the classical trailing string, one has
$ t=\tau,\quad r=\sigma,\quad x_{p}=vt+\xi(\sigma)+\delta x_p(\tau,\sigma), $
(20) where the fluctuation takes the form
$ \delta x_p(\tau,\sigma) $ along and transverse to the direction of$ x_p $ . A simple expression for the quadratic action in the world sheet embedding fluctuations that capture fluctuations of heavy quark reads$ \begin{split} \;&S_2= -\frac{1}{2\pi\alpha'}\int {\rm d}\tau {\rm d}\sigma \frac{H^{\alpha\beta}}{2} \Biggr(N[r]\partial_{\alpha}\delta x_p\partial_{\beta}\delta x_p\\ & \qquad +\sum_{i\neq p} g_{ii}\partial_{\alpha}\delta x_i\partial_{\beta}\delta x_i \Biggr),\\ & N(r)\equiv\frac{g_{tt}g_{pp}+C^2}{g_{tt}+g_{pp}v^2},\\ & H^{\alpha\beta}=\sqrt{-{\rm det} (h)}h^{\alpha\beta}, \end{split} $
(21) where
$ h^{\alpha\beta} $ is the inverse of the diagonalized induced world-sheet metric. Please refer to [12, 17, 47, 49] for a detailed proof. For an arbitrary massless fluctuation ϕ with an action, we have$ S_2=-1/2\int {\rm d}x{\rm d}r\sqrt{-g}Q(r)g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\phi. $
(22) Taking advantage of the membrane paradigm [50], one can directly obtain the transport coefficient associated with the retarded Green’s function form given by Eq. (22) without solving the motion equation as
$ \begin{split} \chi_{R}&=-\lim\limits_{k_{\mu}\rightarrow0}\frac{\Im G_{R}(\omega,\vec{k})}{\omega}=Q(r_h), \end{split} $
(23) where Q is the only effective coupling of the fluctuation and the metric dependence drops out in the 2-dimensional world sheet black hole horizon.
For sufficiently large times, the temporal correlation functions of the random force operator on a Brownian particle are proportional to Dirac delta distributions, with the proportionality factors defining the Langevin diffusion coefficients. The noise term is determined by the symmetrized real-time correlation functions of the random forces over the statistical ensemble. Then, the LGV-coefficient can be defined in terms of the symmetric correlator
$ G_{\rm sym} $ [12] as$ \begin{split} \kappa_{d}&=\lim\limits_{\omega\rightarrow0} G^{d}_{\rm sym}(\omega)\\ &=-\coth{\frac{\omega}{2T_{ws}}}\lim\limits_{\omega\rightarrow0} (\Im G^d_{R}(\omega))\\ &=-2T_{ws}\lim\limits_{\omega\rightarrow0} \frac{\Im G^d_{R}(\omega)}{\omega}\\ &=2T_{ws}\chi_{R}^{d}\\ &=2T_{ws}Q^{d}(r_c). \end{split} $
(24) where
$ d=(\perp,\parallel) $ . The second step requires the$ \omega\rightarrow 0 $ limit of$ G^{d}_{\rm sym}(\omega)=\coth{\dfrac{\omega}{2T}}\Im G^{d}_{R}(\omega) $ [13], and the third step requires Eq. (23). Comparing Eqs. (21) and (22), one obtains$ \begin{aligned}[b] & Q^{\perp}=\frac{1}{2\pi\alpha}g_{kk}\bigg|_{r=r_c},\quad \\ & Q^{\parallel}=\frac{1}{2\pi\alpha}\lim\limits_{r\rightarrow r_c}N(r)=\frac{1}{2\pi\alpha}\frac{(g_{tt}g_{pp})'}{g_{pp}\left(\dfrac{g_{tt}}{g_{pp}}\right)'}\bigg|_{r=r_c}. \end{aligned} $
(25) Given that
$ N(r_c)=\dfrac{0}{0} $ , the L’Hopital’s rule must be applied to calculate the limit. One can also insert Eq. (25) into Eq. (24), which yields$ \kappa_{\perp}= \frac{1}{\pi \alpha'}g_{kk}|_{r=r_c}T_{ws},\qquad \kappa_{\parallel}=\frac{1}{\pi\alpha'} \frac{( g_{tt}g_{pp})'}{g_{pp} \left(\dfrac{g_{tt}}{g_{pp}}\right)'}\bigg|_{r=r_c}T_{ws}. $
(26) In our case, one can also insert the metric given by Eq. (7) into Eq. (26), obtaining
$ \kappa_{\perp}=\frac{\sqrt{\lambda}}{\pi}r_c^2T^{ws}_{R2}, $
(27) and
$ \kappa_{\parallel} =\frac{r_c^2 \sqrt{\lambda} \left(b r_0^8-(a+1) r_c^8\right)}{\pi r_0^4 \left(2 b r_0^4-r_c^4\right)} T^{ws}_{R2}, $
(28) where we used the fact that
$ \alpha' = \dfrac{L^2}{\sqrt{\lambda}} = \dfrac{1}{\sqrt{\lambda}} $ .In the conformal limit, one can obtain well-known results [12, 13] by taking limits of both
$ a \to 0 $ and$ b \to 0 $ ,$ \kappa_{\perp}^{\rm SYM}=\sqrt{\lambda} \pi T_{\text{\rm SYM}}^3 \gamma_v^{{1}/{2}},\qquad \kappa_{\parallel}^{\rm SYM}=\sqrt{\lambda} \pi T_{\text{SYM}}^3 \gamma_v^{{5}/{2}}. $
(29) One can check that Eqs. (27) and (28) reduce to these results by taking the limit for
$ \alpha \rightarrow 0 $ and$ \beta \rightarrow 0 $ .The effects from
$ \mathcal{R}^2 $ corrections to the classical trailing string, which models the drag force on a moving heavy quark in SYM plasma, were studied in [45] for two distinct scenarios:$T_{R^2} < T_{\rm SYM}$ and$T_{R^2} > T_{\rm SYM}$ . Following this convention, we found it convenient to explore the curvature squared corrections on the fluctuations of the trailing string that is related to LGV-coefficients. More precisely, we investigated the$ \mathcal{R}^2 $ corrections to$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ by evaluating Eqs. (27) and (28) using two distinct sets of values for the parameters a and b.Figure 1 demonstrates the impact of
$ \mathcal{R}^2 $ corrections on LGV-coefficients for$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ normalized by the SYM result expressed by Eq. (29), with two scenarios at the same heat bath temperature ($T_{R^2}=T_{\rm SYM}$ ). Plots (a) in Fig. 1 show$ \mathcal{R}^2 $ corrections on LGV-coefficients at fixed small values of$ a=-0.0005 $ and$ b=+0.0006 $ corresponding to$T_{R^2} < T_{\rm SYM}$ . It is clear from these plots that the$ \mathcal{R}^2 $ corrections to both$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ increase monotonically with the moving velocity of the heavy quark, and corrections to the LGV-coefficients are larger than those of the SYM case at all velocities. However, note also that this type of$ \mathcal{R}^2 $ corrections can be smaller than$ \mathcal{N}=4 $ SYM results in plots (b) in Fig. 1 for$ a=-0.0005 $ and$ b=-0.0007 $ corresponding to$T_{R^2} > T_{\rm SYM}$ . In this case, a critical velocity ($ v_c $ ) exists such that the corrections increase both$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ if$ v>v_c $ while corrections decrease both$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ if$ v>v_c $ .Figure 1. (color online) Corrections to transverse LGV-coefficients
$ \kappa_{\perp} $ and longitudinal LGV-coefficients$ \kappa_{\parallel} $ as a function of the velocity of the heavy quark, normalized by the respective conformal limit.As a result, we conclude that the finite coupling corrections affect both
$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ on a moving quark in the strongly-coupled plasma and depend on the details of curvature squared corrections. The LGV-coefficients can be larger or smaller than those in the infinite-coupling case. However, at a fixed velocity, the corrected$ \kappa_{\parallel} $ is always at least as large as the corrected$ \kappa_{\perp} $ . Moreover, the universal relation$ \kappa_{L}\geq\kappa_{T} $ reported in [17] always holds when$T_{R^2} > T_{\rm SYM}$ and$T_{R^2} < T_{\rm SYM}$ . Our findings are similar to the case of drag force on a moving heavy quark reported in [45]. -
The Gauss-Bonnet (GB) gravity [51] is one of the most interesting theories of gravity with curvature squared correction in five dimensions. The exact solutions and thermodynamic properties of the GB background were discussed in [52−54]. One can also consider the GB gravity as a special case of the general action described by Eq. (1) where
$ c_2=-4c_1 $ and$c_1=c_3=\lambda_{\rm GB}/2$ . This yields an action defined as$ \begin{split} S=\;&\frac{1}{16\pi G_5}\int {\rm d}^5 x\sqrt{-g}\times\Bigg[\mathcal{R}-\Lambda+L^2\frac{\lambda_{\rm GB}}{2}\left(\mathcal{R}^2-4\mathcal{R}_{\mu\nu}\mathcal{R}^{\mu\nu}\right.\\ & \left.+\mathcal{R}_{\mu\nu\rho\sigma}\mathcal{R}^{\mu\nu\rho\sigma}\right)\Bigg]. \\[-1pt] \end{split} $
(30) The dimensionless Gauss-Bonnet coupling constant
$\lambda_{\rm GB}$ can be constrained by causality [23] and the positive boundary energy density on the boundary [55] satisfies$ -\frac{7}{36}<\lambda_{\rm GB}\le \frac{9}{100}. $
(31) A black hole solution in this case is known analytically [52]:
$ {\rm d}s^2=-n\frac{r^2}{L^2}f_{\rm GB}(r){\rm d}t^2+\frac{r^2}{L^2}{\rm d}\vec{x}^2+\frac{L^2}{r^2f_{\rm GB}(r)}{\rm d}r^2 , $
(32) where
$ \begin{split} f_{\rm GB}(r)&=\frac{1}{2\lambda_{\rm GB}}\left(1-\sqrt{1-4\lambda_{\rm GB}(1-r_+^4/r^4)}\right)\,,\\ n&=\frac{1}{2}\left(1+\sqrt{1-4\lambda_{\rm GB}}\right)\,. \end{split} $
(33) The boundary of the metric expressed by Eq. (32) is placed at
$ r\rightarrow \infty $ . We set the positive parameter n such that the speed of light of the boundary gauge theory is unity. As a result, we have$ f_{\rm GB}(r\xrightarrow{}\infty)=\frac{1}{n}. $
(34) The heat bath temperature of the black hole is given by
$ T_{\rm GB}=\frac{\sqrt{n}r_+}{\pi L^2}, $
(35) where
$ r_+ $ depends on$\lambda_{\rm GB}$ for a fixed Hawking temperature.Using a general form of metric, one has
$ \begin{split} g_{tt}(r)=-n\frac{r^2}{L^2}f_{\rm GB}(r),\qquad g_{ii}(r)=\frac{r^2}{L^2}, \qquad g_{rr}(r)=\frac{L^2}{r^2f_{\rm GB}(r)}. \end{split} $
(36) In our analysis, we set the
$ AdS_5 $ -radius to be unity for convenience. Using the same procedures as before, we can easily find the critical value$r^{c}_{\rm GB}$ where the numerator and denominator change sign at the same value,$ r^{c}_{\rm GB}=\frac{\sqrt{n}(r_+)}{\left(n (n-v^2)+\lambda_{\rm GB} v^4\right)^{\frac{1}{4}}}. $
(37) The world-sheet temperature of GB gravity of a quark feel is denoted as
$ T^{ws}_{\rm GB} $ and expressed as$ \begin{split} & T^{ws}_{\rm GB} = \frac{1}{2\pi} \left[\left| \frac{-4n\lambda_{\rm GB}(r_+)^8 +2n(r^c_{\rm GB})^4 r_+^4K}{\lambda_{\rm GB}(r^c_{\rm GB})^2 \left(\left(-1+4\lambda_{\rm GB} \right)(r^c_{\rm GB})^4-4\lambda_{\rm GB} r_+^4\right)} \right|\right]^{{1}/{2}},\\ & K=\left[-1+4\lambda_{\rm GB}+\sqrt{1+\lambda_{\rm GB}\left(-4+\frac{4r_+^4}{(r^c_{\rm GB})^4}\right)} \right]. \end{split} $
(38) Asserting Eq. (36) to Eqs. (17), (28), and (27), we obtain the longitudinal and perpendicular LGV-coefficients as
$ \begin{split} \kappa^{\perp}_{\rm GB} &=\frac{\sqrt{\lambda}}{\pi}(r^c_{\rm GB})^2T^{ws}_{\rm GB} \end{split} $
(39) and
$ \begin{split} \kappa^{\parallel}_{\rm GB} &= -\frac{-2\sqrt{\lambda}\lambda_{\rm GB}(r^c_{\rm GB})^4r_+^4+(r^c_{\rm GB})^8K}{2 \pi \lambda_{\rm GB} (r_{\rm GB}^c)^2r_+^4} T^{ws}_{\rm GB}. \end{split} $
(40) One can check that Eqs. (39) and (40) reduce to the results in the conformal limit given by Eq. (29) by taking the limit of
$\lambda_{\rm GB} \rightarrow 0$ .By employing GB gravity, we now discuss the
$ \mathcal{R}^2 $ corrections on the LGV-coefficients, normalized by the limits given in Eq. (29) for$ \mathcal{N}=4 $ SYM, with two scenarios at the same heat bath temperature ($T_{\rm GB}=T_{\rm SYM}$ ). Plots (a) and (b) in Fig. 2 depict$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ respectively as functions of moving velocity and$\lambda_{\rm GB}$ . It is evident that both$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ are independent of the values of moving velocity and$\lambda_{\rm GB}$ . Note that the correction behaviors to$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ are notably similar, and the universal relation$ \kappa_{\parallel} \geq\kappa_{\perp} $ identified in [17] also holds in the context of GB gravity.Figure 2. (color online) Corrections to the transverse LGV-coefficients
$ \kappa_{\perp} $ (left panel) and longitudinal LGV-coefficients$ \kappa_{\parallel} $ (right panel) as functions of both velocity and$ \lambda_{\rm GB} $ , normalized by the respective conformal limit.It was found that the results concerning LGV-coefficients in GB gravity when
$\lambda_{\rm GB}=0$ reduce to those of the case corresponding to$ \mathcal{N}=4 $ SYM. For$\lambda_{\rm GB} > 0$ , Fig. 2 demonstrates that the corrections to$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ become monotonically stronger with increasing velocity of the moving heavy quark or increasing$\lambda_{\rm GB}$ . Conversely, for$\lambda_{\rm GB} < 0$ ,$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ for a moving heavy quark under GB gravity become less than those in the$ \mathcal{N}=4 $ SYM case. Furthermore, the corrections to$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ increase monotonically with the absolute value of$ \lambda_{\rm GB} $ and with the growing velocity of the moving heavy quark. We conclude that the finite coupling corrections affect both$ \kappa_{\perp} $ and$ \kappa_{\parallel} $ on a moving quark in the strongly-coupled plasma and depend on the details of curvature squared corrections. The LGV-coefficients can be larger or smaller than those in the infinite-coupling case.
${\mathcal{{{R}}}^{\boldsymbol{2}}}$ curvature-squared corrections on Langevin diffusion coefficients
- Received Date: 2024-07-08
- Available Online: 2025-01-15
Abstract: The effect of finite coupling corrections to the Langevin diffusion coefficients on a moving heavy quark in the Super Yang-Mills plasma was investigated. These corrections are related to curvature squared corrections in the corresponding gravity sector. We compared the results of both longitudinal and perpendicular Langevin diffusion coefficients with those for