×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(I)

  • In this paper, we analyse the commutation relations of the infintesimal opera-tors of the group SU3 and find that the eight infinitesimal operators of the groupSU3 can be written as a scalar operator A, three angular momentum operators (L1,Lo, L-1,)and two sets of the irreducible tensor operators of rank 1/2, (T±1/2,V±1/2)By means of the commutation relations of these operators, all irreducible represen-tations of the group SU3 can be easily obtained. In this pape, the matrices corresponding to these operators in the irreduciblerepresentation(λμ), are given; therefore the irreducible representation and its re-presentation space Rλμ are completely defined. Besides, a method for calculatingthe scalar factors of the reduction coefficients and the symmetric relations of thosefactors are also given. As examples, the scalar factors of the reduction coefficientsof (λμ)×(10), (λμ)×(01), (λμ)×(20) and (λμ)×(11) are calculated. In the last part of this paper, we define the irreducible tensor operators ofthe group SU3 and prove the corresponding Wigner-Eckart theory. The method used in the discussion of the group SU3 be extended to allof the compact simple Lie groups of rank 2 and we shall discuss them in two suc-ceeding papers.
  • 加载中
  • [1] G. Racah, Group Theory and Spectroscopy, Princeton,(1951).[2] R. E. Bchrends et al., Rev. Mod. Phys., 34 (1962),1.[3] A. Salam, Theoretical Physics, p. 173., Viena,(1963).[4] J. P. Elliott et al., Proc. Roy. Soc., A277 (1963), 557.[5] A. Arima et al., Nucl. Phys., A138 (1969),273., A162(1971),605.[6] K. T. Hecht, Nucl. Phys., 63 (1965), 177.[7] G. Gneuss et al., Nucl. Phys., A171 (1971),449.[8] B. H. Flowers et al., Proc. Phys. Soc., 84 (1964),139.[9] A. R. Edmonds, Angular Momentum in Quantum Mechanics, Priceton,(1957).[10] 孙洪洲等,物理学报21(1965), 56,[11] 杨国祯等,北京大学学报(自然科学版)10(1964), 269.[12] S. McDonald et al., J. Math. Phys.,14 (1973),1248.[13] J. P. Draayer et al., J. Math. Phys.,14 (1973),1904.[14] E. M. Haacke et al., J. Math. Phys.,17 (1976),2040.[15] 侯伯宇,中国科学,14(1965), 367.[16] J. J. De Swaat, Rev. Mod. Phys., 35(1963),916.[17] L. C. Biedenharn et a1, J. Math. Phys., 4(1963),1449.,4(1964),1723.,4 (1964),1730.[18] 陈金全等,高能物理与核物理,3(1979),216.
  • 加载中

Get Citation
Sun Hung-zhou. ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(I)[J]. Chinese Physics C, 1980, 4(1): 73-92.
Sun Hung-zhou. ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(I)[J]. Chinese Physics C, 1980, 4(1): 73-92. shu
Milestone
Received: 1978-12-08
Revised: 1900-01-01
Article Metric

Article Views(2884)
PDF Downloads(333)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(I)

  • Peking University

Abstract: In this paper, we analyse the commutation relations of the infintesimal opera-tors of the group SU3 and find that the eight infinitesimal operators of the groupSU3 can be written as a scalar operator A, three angular momentum operators (L1,Lo, L-1,)and two sets of the irreducible tensor operators of rank 1/2, (T±1/2,V±1/2)By means of the commutation relations of these operators, all irreducible represen-tations of the group SU3 can be easily obtained. In this pape, the matrices corresponding to these operators in the irreduciblerepresentation(λμ), are given; therefore the irreducible representation and its re-presentation space Rλμ are completely defined. Besides, a method for calculatingthe scalar factors of the reduction coefficients and the symmetric relations of thosefactors are also given. As examples, the scalar factors of the reduction coefficientsof (λμ)×(10), (λμ)×(01), (λμ)×(20) and (λμ)×(11) are calculated. In the last part of this paper, we define the irreducible tensor operators ofthe group SU3 and prove the corresponding Wigner-Eckart theory. The method used in the discussion of the group SU3 be extended to allof the compact simple Lie groups of rank 2 and we shall discuss them in two suc-ceeding papers.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return