THE “UNIRARY ENERGY BAND” STRUCTURE IN THE BARYON-ANTIBARYON SYSTEN

  • In the present paper a picture of the baryon-antibaryon system is proposed. If proton, neutron and A hyperon with spin 1/2 form the SU(6) basic particles, then the baryon-antibaryon system must be classified by the SU(6) group (It can be classified into pseudoscalar BB system and vector BB system). The spectrum of the BB system has two characteristics: The "Unitary energy band" and the "strangeness analogy state". In this paper the experimental spectrum of the Pp systemwith spin 1/2 and the calculation show that there exist the SU(6) "Unitary energy band" in the Pp system and exist the "strangeness analogy state" between the Pp system and other BB systems such as np system or BB systems which have strangeness S=±1.
  • [1] E. Fermi and C. M. Yang, Phys. Rev., 76(1949), 1739;S. Sakate, Prog. Theor. Phys, 16(1958), 686,M. Gell-Mann and Y. Neeman. The Eieht fold Way. 1964.[2] B. Sakita, Phys. Rev., 136B(19d4), 1756; F.Glirsey and L. A. Radicati, Phys. Rev. Lett., 13 (1964), 173.[3] 陈晓天、阮图南、张禹顺、李扬国,高能物理与核物理,4(1980), 445,[4] 张禹顺、王潍潍、李扬国、陈晓天、阮图南,高能物理与核物理5 (1980),149,[5] 曹徽文,1979年私人通信.[6] P. G. Pavlopoulus et al.,Phys. Lett.,72B(1978), 415.[7] L. Gray et al., Phys. Rev. Lett., 34(1975), 1491.[8] T. galogeropoulas et al., Phys. Rev. Lett., 34(1975), 1047.[9] Ambroeio Fraecati LNF-77/24 (P) Preprint (1977).[10] A. S. Carroll et al., Phys. Rev. Lett., 32(1974), 247.[11] Y. Chalonpka et al., Phys. Lett., 61B(1976), 487.[12] L. Montanet in Proc. of V International Conf. on Experimental Meson Spectroscopy, Boston 29-30 April, (1977);CEBN/EP/Phys., 77-22 (1977).[13] S. Ozaki, Proc. 19th International Conf. on High Energy Phyeice, A5 Hadron Spectroscopy, p.101, 1978. Tokyo.[14] A. Benvennti et al., Phys. Rev. Lett.,27(1971),183.[15] A. Carter et al., Phys. Lett., 67B(1977), 117; Rutherford Lab. Preprint RL/78/032(1978), IV Eurnperan Antiproton Symp. Straebonrg, June (1978).[16] P. Benkeiri et al., Phys. Lett., 68B(1977), 483.[17] O. Braun et ai., Phys. Lett., 60B(1976),481.[18] O. Avaugelieta et al., Phys. Lett., 72B(1977), 139.[19] A. Apoetolakie et al., Phys. Lett., 66B(1977), 185.[20] O. Baloehin, Proc. 19th International Conf. on High Energy Physics, 1978, Tokyo, p. 1049.
  • [1] E. Fermi and C. M. Yang, Phys. Rev., 76(1949), 1739;S. Sakate, Prog. Theor. Phys, 16(1958), 686,M. Gell-Mann and Y. Neeman. The Eieht fold Way. 1964.[2] B. Sakita, Phys. Rev., 136B(19d4), 1756; F.Glirsey and L. A. Radicati, Phys. Rev. Lett., 13 (1964), 173.[3] 陈晓天、阮图南、张禹顺、李扬国,高能物理与核物理,4(1980), 445,[4] 张禹顺、王潍潍、李扬国、陈晓天、阮图南,高能物理与核物理5 (1980),149,[5] 曹徽文,1979年私人通信.[6] P. G. Pavlopoulus et al.,Phys. Lett.,72B(1978), 415.[7] L. Gray et al., Phys. Rev. Lett., 34(1975), 1491.[8] T. galogeropoulas et al., Phys. Rev. Lett., 34(1975), 1047.[9] Ambroeio Fraecati LNF-77/24 (P) Preprint (1977).[10] A. S. Carroll et al., Phys. Rev. Lett., 32(1974), 247.[11] Y. Chalonpka et al., Phys. Lett., 61B(1976), 487.[12] L. Montanet in Proc. of V International Conf. on Experimental Meson Spectroscopy, Boston 29-30 April, (1977);CEBN/EP/Phys., 77-22 (1977).[13] S. Ozaki, Proc. 19th International Conf. on High Energy Phyeice, A5 Hadron Spectroscopy, p.101, 1978. Tokyo.[14] A. Benvennti et al., Phys. Rev. Lett.,27(1971),183.[15] A. Carter et al., Phys. Lett., 67B(1977), 117; Rutherford Lab. Preprint RL/78/032(1978), IV Eurnperan Antiproton Symp. Straebonrg, June (1978).[16] P. Benkeiri et al., Phys. Lett., 68B(1977), 483.[17] O. Braun et ai., Phys. Lett., 60B(1976),481.[18] O. Avaugelieta et al., Phys. Lett., 72B(1977), 139.[19] A. Apoetolakie et al., Phys. Lett., 66B(1977), 185.[20] O. Baloehin, Proc. 19th International Conf. on High Energy Physics, 1978, Tokyo, p. 1049.
  • 加载中

Cited by

1. Han, X., Yang, W., Li, F. FPGA implementation and measurement of cusp-flattop hybrid filter shaping method for nuclear instruments[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024. doi: 10.1016/j.nima.2024.169572
2. Zhou, H., Xu, F., Xie, Y. et al. Study on gamma spectrum measurement of high-dose-rate radiation[J]. Journal of Physics: Conference Series, 2024, 2770(1): 012015. doi: 10.1088/1742-6596/2770/1/012015
3. Wang, M., Zhou, J., Wang, H. et al. Pile-up Pulse Recognition Method Based on Ballistic Deficit Shape Feature | [基于弹道亏损形状特征的堆积脉冲识别方法][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2024, 58(1): 231-238. doi: 10.7538/yzk.2023.youxian.0167
4. Zhou, H., Xu, F., Wu, F. et al. Study on Pulse Polarity Self-Adapting of Digital MCA[J]. 2023. doi: 10.1145/3654446.3654457
5. Tang, L., Li, Y., Tang, Y. et al. Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy | [基于深度学习的 LSTM 模型在 X 荧光光谱中的应用][J]. He Jishu/Nuclear Techniques, 2023, 46(7): 070502. doi: 10.11889/j.0253-3219.2023.hjs.46.070502
6. Kumar Paul, R., Das, A., Dhara, P. et al. Implementation of FPGA based real-time digital DAQ for high resolution, and high count rate nuclear spectroscopy application[J]. Journal of Instrumentation, 2023, 18(7): P07042. doi: 10.1088/1748-0221/18/07/P07042
7. Ma, X.-K., Huang, H.-Q., Huang, B.-R. et al. X-ray spectra correction based on deep learning CNN-LSTM model[J]. Measurement: Journal of the International Measurement Confederation, 2022. doi: 10.1016/j.measurement.2022.111510
8. Wang, Q., Zhang, X., Meng, X. et al. Multi-channel analyzer based on a novel pulse fitting analysis method[J]. Nuclear Engineering and Technology, 2022, 54(6): 2023-2030. doi: 10.1016/j.net.2021.12.019
9. Xiao-feng, Y., Hong-Quan, H., Guo-Qiang, Z. et al. Pulse Pile-up Correction by Particle Swarm Optimization with Double-layer Parameter Identification Model in X-ray Spectroscopy[J]. Journal of Signal Processing Systems, 2022, 94(4): 377-386. doi: 10.1007/s11265-021-01698-4
10. Hao, J., Li, F., Wang, Q. et al. Quantitative analysis of trace elements of silver disturbed by pulse pile up based on energy dispersive X-ray fluorescence (EDXRF) technique[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. doi: 10.1016/j.nima.2021.165672
11. Tang, L., Zhang, J., Shi, K. et al. Application of an improved seeds local averaging algorithm in x-ray spectrum[J]. Mathematical Problems in Engineering, 2021. doi: 10.1155/2021/5545818
12. Wang, X., Li, Z.H., Liu, Z. et al. An effective digital pulse processing method for pile-up pulses in decay studies of short-lived nuclei[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020. doi: 10.1016/j.nima.2020.164068
13. Wang, M., Hong, X., Zhou, J.-B. et al. Rising time restoration for nuclear pulse using a mathematic model[J]. Applied Radiation and Isotopes, 2018. doi: 10.1016/j.apradiso.2018.01.018
14. Hong, X., Zhou, J., Ni, S. et al. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping[J]. Journal of Synchrotron Radiation, 2018, 25(2): 505-513. doi: 10.1107/S1600577518000322
15. Hong, X., Zhou, J.-B., Zhao, X. et al. Digital on-line uranium concentration determination system design[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(10): 1004-1007.
16. Hong, X., Ni, S.-J., Zhou, J.-B. et al. Study on the relationship between the shaping parameters of trapezoidal pulse shaping algorithm and the trapezoidal pulse shape[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(2): 150-153 and 158.
Get Citation
WANG WEI-WEI, ZHANG YU-SHUN, LI YANG-GUO, CHEN XIAO-TIAN and RUAN TU-NAN. THE “UNIRARY ENERGY BAND” STRUCTURE IN THE BARYON-ANTIBARYON SYSTEN[J]. Chinese Physics C, 1981, 5(4): 441-451.
WANG WEI-WEI, ZHANG YU-SHUN, LI YANG-GUO, CHEN XIAO-TIAN and RUAN TU-NAN. THE “UNIRARY ENERGY BAND” STRUCTURE IN THE BARYON-ANTIBARYON SYSTEN[J]. Chinese Physics C, 1981, 5(4): 441-451. shu
Milestone
Received: 1979-11-26
Revised: 1900-01-01
Article Metric

Article Views(2193)
PDF Downloads(244)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

THE “UNIRARY ENERGY BAND” STRUCTURE IN THE BARYON-ANTIBARYON SYSTEN

Abstract: In the present paper a picture of the baryon-antibaryon system is proposed. If proton, neutron and A hyperon with spin 1/2 form the SU(6) basic particles, then the baryon-antibaryon system must be classified by the SU(6) group (It can be classified into pseudoscalar BB system and vector BB system). The spectrum of the BB system has two characteristics: The "Unitary energy band" and the "strangeness analogy state". In this paper the experimental spectrum of the Pp systemwith spin 1/2 and the calculation show that there exist the SU(6) "Unitary energy band" in the Pp system and exist the "strangeness analogy state" between the Pp system and other BB systems such as np system or BB systems which have strangeness S=±1.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return