×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

ON GEOMETRIC QUANTIZATION FOR THE BOSONIC STRINGS(1)

  • The geometric quantization for bosonic strings is discussed in this paper.Relations among different polarizations and representations of operators in different polarizations are given.It is pointed out that the prequantization Hilbert space is the unitary representation of the conformal group where the centre term of Virasoro algebra does not exist but this representation is reducible.By polarization it is reduced into two projective representations with the phase factors with opposite signs.Then the conformal anomaly is obtained.In the viewpoint of geometric quantization,the emergence of the conformal anomaly stems from the fact that polarization is introduced because the quantum states of string must satisfy the uncertainty relation but all generators of conformal transformation don't preserve the same polarization.
  • 加载中
  • [1] J. Scherk, Rev. Mod. Phys., 17(1975), 123;P. Goddard and C. B. Thorn, Phys. Lett., 40B(1972), 235.[2] J. Sniatycki. Geometric Quantization and Quantum Mechanics (Springer-Verlag. New York (1980).[3] N. J. Woodhouse, Geometric Quantization (Clarendon Press, Oxford, UK (1980).[4] M. Bowick and S. G. Rajeev, Nucl. Phys., B293(1987), 348; Phys. Rev. Lett., 58(1987), 353; MIT preprints CTP 1494(1987).D. Harri, D. K. Hong, P. Ramond and V. G. Rodgers, Florida preprints, UFTP-87-10.[5] M. J. Gotay, J. M. Nester and G. Hinds, J. Math. Phys., 19(1978), 2388.M. J. Gotay. J. Math. Phys., 27(1986), 2051.A. Ashtekar and M. Stillerman, J. Math. Phys. 27(1986), 1393.
  • 加载中

Get Citation
YU Yue and GUO Han-Ying. ON GEOMETRIC QUANTIZATION FOR THE BOSONIC STRINGS(1)[J]. Chinese Physics C, 1989, 13(5): 419-428.
YU Yue and GUO Han-Ying. ON GEOMETRIC QUANTIZATION FOR THE BOSONIC STRINGS(1)[J]. Chinese Physics C, 1989, 13(5): 419-428. shu
Milestone
Received: 1900-01-01
Revised: 1900-01-01
Article Metric

Article Views(2262)
PDF Downloads(469)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

ON GEOMETRIC QUANTIZATION FOR THE BOSONIC STRINGS(1)

    Corresponding author: YU Yue,
  • Institute of High Energy Physics,Academia Sinica,Beijing2 Institute of Theoretical Physics,Academia Sinica,Beijing

Abstract: The geometric quantization for bosonic strings is discussed in this paper.Relations among different polarizations and representations of operators in different polarizations are given.It is pointed out that the prequantization Hilbert space is the unitary representation of the conformal group where the centre term of Virasoro algebra does not exist but this representation is reducible.By polarization it is reduced into two projective representations with the phase factors with opposite signs.Then the conformal anomaly is obtained.In the viewpoint of geometric quantization,the emergence of the conformal anomaly stems from the fact that polarization is introduced because the quantum states of string must satisfy the uncertainty relation but all generators of conformal transformation don't preserve the same polarization.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return