Faddeev-Senjanovic Quantization of the Supersymmetrical Electrodynamic System

  • According to the method of path integral quantization for the canonical constrained system in Faddeev-Senjanovic scheme, we quantize the supersymmetrical electrodynamic system in general situation, and obtain the generating functional of Green function. Another first class constraint is obtained by making the linear combination of several primary constraints, the generator of gauge transformation is constructed, gauge transformations of all the different fields are deduced. Utilizing the consistency equation of gauge fixing condition to deduce another gauge fixing condition, we find that the secondary constraint of the system is an Euler-Lagrange equation which is just the conversation law of electric charge. Thus, we do not need to calculate the other secondary constraints step by step, and get no new constraints naturally. So, the Faddeev-Senjanovic path integral quantization of the supersymmetrical electrodynamic system is simplified.
  • 加载中
  • [1] . Kushreshtha D S, Muller-Kirsten H J W. Phys. Rev., 1991,D43: 33762. Batalin I A, Bering K, Damgaard P H. Nucl. Phys., 1998,B515: 4553. Rupp C, Scharf R, Sibold K. Nucl. Phys., 2001, B612: 3134. Muller-Kirsten H J W, Wiedemann A. Supersymmetry-An Introduction with Conceptual and Calculational Details. Singapore: World Scientifc, 1987. 5475. Muller-Kirsten H J W, Wiedemann A. Supersymmetry-An Introduction with Conceptual and Calculational Details. Singapore: World Scientifc, 1987. 5466. Dirac P A M. Lecture on Quantum Mechanics. New York:Yeshiva University, 1964. 1-117. Dirac P A M. Lecture on Quantum Mechanics. New York:Yeshiva University, 1964. 98. LI Zi-Ping. Symmetries in Constrained Canonical System.Beijing: Science Press, 2002. 219. Dirac P A M. Lecture on Quantum Mechanics. New York:Yeshiva University, 1964. 1-1710. Castellani L. Ann. Phys.(NY), 1983, 144: 35711. Senjanovic P. Ann. Phys.(NY), 1976, 100: 22712. Costa M E V, Girotti H O, Simoes T J M. Phys. Rev.,1985, D32: 4013. LIAO Leng, HUANG Yong-Chang. HEP NP, 2006, 30:191(in Chinese)(廖棱, 黄永畅. 高能物理与核物理, 2006, 30: 191)
  • 加载中

Get Citation
JIANG Yun-Guo and HUANG Yong-Chang. Faddeev-Senjanovic Quantization of the Supersymmetrical Electrodynamic System[J]. Chinese Physics C, 2006, 30(12): 1151-1155.
JIANG Yun-Guo and HUANG Yong-Chang. Faddeev-Senjanovic Quantization of the Supersymmetrical Electrodynamic System[J]. Chinese Physics C, 2006, 30(12): 1151-1155. shu
Milestone
Received: 2006-03-06
Revised: 2006-04-12
Article Metric

Article Views(3558)
PDF Downloads(854)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Faddeev-Senjanovic Quantization of the Supersymmetrical Electrodynamic System

    Corresponding author: HUANG Yong-Chang,
  • Institute of Theoretical Physics, College of Applied Mathematics and Physics,Beijing University of Technology, Beijing 100022, China2 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China3 CCAST World Lab., Beijing 100080, China

Abstract: According to the method of path integral quantization for the canonical constrained system in Faddeev-Senjanovic scheme, we quantize the supersymmetrical electrodynamic system in general situation, and obtain the generating functional of Green function. Another first class constraint is obtained by making the linear combination of several primary constraints, the generator of gauge transformation is constructed, gauge transformations of all the different fields are deduced. Utilizing the consistency equation of gauge fixing condition to deduce another gauge fixing condition, we find that the secondary constraint of the system is an Euler-Lagrange equation which is just the conversation law of electric charge. Thus, we do not need to calculate the other secondary constraints step by step, and get no new constraints naturally. So, the Faddeev-Senjanovic path integral quantization of the supersymmetrical electrodynamic system is simplified.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return