Entrance Channel Dependence of Production Cross Sections of Superheavy Nucleus 266Hs

  • For the 26Mg+244Cm, 27Al+243Am and 32S+238U systems, the capture cross sections and the formation of the compound nucleus 270Hs are calculated and compared. In the entrance channel, the projectile is captured after overcoming the Coulomb barrier that has a distribution due to the deformation of the target nucleus. After contact, the system is assumed to be injected into an "asymmetric fission valley'' by the neutron induced neck formation. The dynamic process of the composite nucleus in the "asymmetric fission valley'' is treated in a two-parameter Smoluchowski equation in which neutron flow and diffusion in elongation coordinates are taken into account. The compound nucleus configuration is achieved only for those events where the system has diffused over the conditional saddle-point in the "asymmetric fission valley''. Our results show that the Coulomb barrier in the entrance channel and the height of the conditional saddle-point in the "asymmetric fission valley'' have obvious influence in the processes of the capture and compound nucleus formation.
  • [1] . LIU Zu-Hua, BAO Jing-Dong. Chin. Phys. Lett., 2005, 22:30442. Swiatecki W J, Siwek-Wilezynska K, Wilezynski J. Phys.Rev., 2005, C71: 0146023. Adamian G G, Antonenko N V, Scheid W. Nucl. Phys.,1998, A633: 4094. Vandenbosch R, Huizenga J R. Nuclear Fission. New York:Academic Press, 1973, 2335. LI Wen-Fei et al. Chin. Phys. Lett., 2004, 21: 6366. Siwek-Wilczynska K, Skwira I. Phys. Rev., 2005, C72:0346057. Adamian G G, Antonenko N V, ScheidWet al. Nucl. Phys.,1998, A633: 4098. Adamian G G, Antonenko N V, Scheid W. Nucl. Phys.,2000, A678: 249. Adamian G G, Antonenko N V, Ivanova S P et al. Phys.Rev., 2000, C62: 064303; Zubov A S et al. ibid. 2002, 65:024308
  • [1] . LIU Zu-Hua, BAO Jing-Dong. Chin. Phys. Lett., 2005, 22:30442. Swiatecki W J, Siwek-Wilezynska K, Wilezynski J. Phys.Rev., 2005, C71: 0146023. Adamian G G, Antonenko N V, Scheid W. Nucl. Phys.,1998, A633: 4094. Vandenbosch R, Huizenga J R. Nuclear Fission. New York:Academic Press, 1973, 2335. LI Wen-Fei et al. Chin. Phys. Lett., 2004, 21: 6366. Siwek-Wilczynska K, Skwira I. Phys. Rev., 2005, C72:0346057. Adamian G G, Antonenko N V, ScheidWet al. Nucl. Phys.,1998, A633: 4098. Adamian G G, Antonenko N V, Scheid W. Nucl. Phys.,2000, A678: 249. Adamian G G, Antonenko N V, Ivanova S P et al. Phys.Rev., 2000, C62: 064303; Zubov A S et al. ibid. 2002, 65:024308
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
LIU Zu-Hua and BAO Jing-Dong. Entrance Channel Dependence of Production Cross Sections of Superheavy Nucleus 266Hs[J]. Chinese Physics C, 2006, 30(12): 1175-1179.
LIU Zu-Hua and BAO Jing-Dong. Entrance Channel Dependence of Production Cross Sections of Superheavy Nucleus 266Hs[J]. Chinese Physics C, 2006, 30(12): 1175-1179. shu
Milestone
Received: 2006-03-02
Revised: 2006-04-13
Article Metric

Article Views(3425)
PDF Downloads(709)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Entrance Channel Dependence of Production Cross Sections of Superheavy Nucleus 266Hs

    Corresponding author: LIU Zu-Hua,
  • China Institute of Atomic Energy, Beijing 102413, China2 Department of Physics, Beijing Normal University, Beijing 100875, China

Abstract: For the 26Mg+244Cm, 27Al+243Am and 32S+238U systems, the capture cross sections and the formation of the compound nucleus 270Hs are calculated and compared. In the entrance channel, the projectile is captured after overcoming the Coulomb barrier that has a distribution due to the deformation of the target nucleus. After contact, the system is assumed to be injected into an "asymmetric fission valley'' by the neutron induced neck formation. The dynamic process of the composite nucleus in the "asymmetric fission valley'' is treated in a two-parameter Smoluchowski equation in which neutron flow and diffusion in elongation coordinates are taken into account. The compound nucleus configuration is achieved only for those events where the system has diffused over the conditional saddle-point in the "asymmetric fission valley''. Our results show that the Coulomb barrier in the entrance channel and the height of the conditional saddle-point in the "asymmetric fission valley'' have obvious influence in the processes of the capture and compound nucleus formation.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return