PROTON-NUCLEUS SCATTERING IN A THERMODYNAMICAL FIREBALL MODEL

  • We attempt use a simple fireball model to explain the slow rise of the ratio RA≡〈NA〉/〈NN〉 of the charged multiplicity for proton-nucleus scattering to that for proton-proton scattering verses the apparent nuclear thickness <span style="border-top: 1px solid; padding-top: 0px;"><em>v</em></span>. The pseudo-rapidity distribution dNA/dη is also discussed. In this model, the pi mesons are emitted by fireballs created during nucleon-nucleon scattering. When the incident energy Elab Z 50 GeV/c2, these fire-balls take so long a time to expend to thermal equilibrium that the fireballs have passed through the nucleus completely before pions are emitted. As a result, the charged multiplicity is greatly reduced.This model gives excellent fittings to pp charged mutiplicity, RA verses <span style="border-top: 1px solid; padding-top: 0px;"><em>v</em></span> as well as Remalsion verses Elab without any free theoretical parameter. By choosing only one parameter for the equilibrium of angular momentum, dNA/dη can be fitted satisfactorily except for the large pseudo-rapidity region.
  • [1] W. Busza, in High Energy Physics and Nuclear B'Eructure, 1975, Proc. of the 6th Inter. Conf Santa Fo and Los Alemns. edited by D. E. Nacle et al..(AIP. New York, 1975) .[2] W. Busza et al.. In Proc. of the XVIII Intor. Conf. on Hing Energy Physics. Tbilisi. 1976 edited by N. N. Bogaliubow et al (JINR, Dnbna, U. S. S. R., 1977).[3] E.Fermi, Prog. Thaor. Phys., 5(1950), 570.[4] E.Feitni. Phys. Rev., 81(1951). 683.[5] T.C. Mangy, Phys. Rev., D9(1974), 3062.[6] M. E. Law et al., Lawroneo Berkeley Laboratory No. LBL-80, 1972 (unpublished).[7] G. Bialkowski, C. B. Chiw and D. M. Tow, Phys. Rev., D17(1978), 862.[8] K. Gott.friod, Phys. Rev. Lett., 32(1974), 957.
  • [1] W. Busza, in High Energy Physics and Nuclear B'Eructure, 1975, Proc. of the 6th Inter. Conf Santa Fo and Los Alemns. edited by D. E. Nacle et al..(AIP. New York, 1975) .[2] W. Busza et al.. In Proc. of the XVIII Intor. Conf. on Hing Energy Physics. Tbilisi. 1976 edited by N. N. Bogaliubow et al (JINR, Dnbna, U. S. S. R., 1977).[3] E.Fermi, Prog. Thaor. Phys., 5(1950), 570.[4] E.Feitni. Phys. Rev., 81(1951). 683.[5] T.C. Mangy, Phys. Rev., D9(1974), 3062.[6] M. E. Law et al., Lawroneo Berkeley Laboratory No. LBL-80, 1972 (unpublished).[7] G. Bialkowski, C. B. Chiw and D. M. Tow, Phys. Rev., D17(1978), 862.[8] K. Gott.friod, Phys. Rev. Lett., 32(1974), 957.
  • 加载中

Cited by

1. Han, X., Yang, W., Li, F. FPGA implementation and measurement of cusp-flattop hybrid filter shaping method for nuclear instruments[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024. doi: 10.1016/j.nima.2024.169572
2. Zhou, H., Xu, F., Xie, Y. et al. Study on gamma spectrum measurement of high-dose-rate radiation[J]. Journal of Physics: Conference Series, 2024, 2770(1): 012015. doi: 10.1088/1742-6596/2770/1/012015
3. Wang, M., Zhou, J., Wang, H. et al. Pile-up Pulse Recognition Method Based on Ballistic Deficit Shape Feature | [基于弹道亏损形状特征的堆积脉冲识别方法][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2024, 58(1): 231-238. doi: 10.7538/yzk.2023.youxian.0167
4. Zhou, H., Xu, F., Wu, F. et al. Study on Pulse Polarity Self-Adapting of Digital MCA[J]. 2023. doi: 10.1145/3654446.3654457
5. Tang, L., Li, Y., Tang, Y. et al. Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy | [基于深度学习的 LSTM 模型在 X 荧光光谱中的应用][J]. He Jishu/Nuclear Techniques, 2023, 46(7): 070502. doi: 10.11889/j.0253-3219.2023.hjs.46.070502
6. Kumar Paul, R., Das, A., Dhara, P. et al. Implementation of FPGA based real-time digital DAQ for high resolution, and high count rate nuclear spectroscopy application[J]. Journal of Instrumentation, 2023, 18(7): P07042. doi: 10.1088/1748-0221/18/07/P07042
7. Ma, X.-K., Huang, H.-Q., Huang, B.-R. et al. X-ray spectra correction based on deep learning CNN-LSTM model[J]. Measurement: Journal of the International Measurement Confederation, 2022. doi: 10.1016/j.measurement.2022.111510
8. Wang, Q., Zhang, X., Meng, X. et al. Multi-channel analyzer based on a novel pulse fitting analysis method[J]. Nuclear Engineering and Technology, 2022, 54(6): 2023-2030. doi: 10.1016/j.net.2021.12.019
9. Xiao-feng, Y., Hong-Quan, H., Guo-Qiang, Z. et al. Pulse Pile-up Correction by Particle Swarm Optimization with Double-layer Parameter Identification Model in X-ray Spectroscopy[J]. Journal of Signal Processing Systems, 2022, 94(4): 377-386. doi: 10.1007/s11265-021-01698-4
10. Hao, J., Li, F., Wang, Q. et al. Quantitative analysis of trace elements of silver disturbed by pulse pile up based on energy dispersive X-ray fluorescence (EDXRF) technique[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. doi: 10.1016/j.nima.2021.165672
11. Tang, L., Zhang, J., Shi, K. et al. Application of an improved seeds local averaging algorithm in x-ray spectrum[J]. Mathematical Problems in Engineering, 2021. doi: 10.1155/2021/5545818
12. Wang, X., Li, Z.H., Liu, Z. et al. An effective digital pulse processing method for pile-up pulses in decay studies of short-lived nuclei[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020. doi: 10.1016/j.nima.2020.164068
13. Wang, M., Hong, X., Zhou, J.-B. et al. Rising time restoration for nuclear pulse using a mathematic model[J]. Applied Radiation and Isotopes, 2018. doi: 10.1016/j.apradiso.2018.01.018
14. Hong, X., Zhou, J., Ni, S. et al. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping[J]. Journal of Synchrotron Radiation, 2018, 25(2): 505-513. doi: 10.1107/S1600577518000322
15. Hong, X., Zhou, J.-B., Zhao, X. et al. Digital on-line uranium concentration determination system design[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(10): 1004-1007.
16. Hong, X., Ni, S.-J., Zhou, J.-B. et al. Study on the relationship between the shaping parameters of trapezoidal pulse shaping algorithm and the trapezoidal pulse shape[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(2): 150-153 and 158.
Get Citation
WU JING-YUAN and XIE YI-CHENG. PROTON-NUCLEUS SCATTERING IN A THERMODYNAMICAL FIREBALL MODEL[J]. Chinese Physics C, 1981, 5(1): 29-38.
WU JING-YUAN and XIE YI-CHENG. PROTON-NUCLEUS SCATTERING IN A THERMODYNAMICAL FIREBALL MODEL[J]. Chinese Physics C, 1981, 5(1): 29-38. shu
Milestone
Received: 1979-08-29
Revised: 1900-01-01
Article Metric

Article Views(2180)
PDF Downloads(248)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

PROTON-NUCLEUS SCATTERING IN A THERMODYNAMICAL FIREBALL MODEL

Abstract: We attempt use a simple fireball model to explain the slow rise of the ratio RA≡〈NA〉/〈NN〉 of the charged multiplicity for proton-nucleus scattering to that for proton-proton scattering verses the apparent nuclear thickness <span style="border-top: 1px solid; padding-top: 0px;"><em>v</em></span>. The pseudo-rapidity distribution dNA/dη is also discussed. In this model, the pi mesons are emitted by fireballs created during nucleon-nucleon scattering. When the incident energy Elab Z 50 GeV/c2, these fire-balls take so long a time to expend to thermal equilibrium that the fireballs have passed through the nucleus completely before pions are emitted. As a result, the charged multiplicity is greatly reduced.This model gives excellent fittings to pp charged mutiplicity, RA verses <span style="border-top: 1px solid; padding-top: 0px;"><em>v</em></span> as well as Remalsion verses Elab without any free theoretical parameter. By choosing only one parameter for the equilibrium of angular momentum, dNA/dη can be fitted satisfactorily except for the large pseudo-rapidity region.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return