Study of the background in the experiments of inner-shell ionization of atoms by positron impact

  • One of main difficulties in the experiments of inner-shell ionization of atoms by positron impact near threshold energy region is the relatively high low-energy background, which is caused by the deposited part of energy in semi-conductor X-ray detectors of 0.511 MeV γ rays that are produced by positron annihilations in targets and target chamber. In this paper, by using the Monte Carlo method, we simulated the backgrounds for the X-ray detectors with the sensitive layer thickness of 0.3 mm and 3 mm in the case of 0.511 MeV γ rays impacting vertically on a Ti plate of 0.2 mm in thickness, and compared the simulation results with the experimental observations of the other research group and our own. Moreover, we also simulated the backgrounds for a simplified experimental setup in the case of 20 keV positrons impacting vertically on a thick Ti target and observed that the backgrounds for the X-ray detectors with the sensitive layer thickness of 0.3 mm and 3 mm, are very similar.
  • [1] . Nagashima Y, Saito F, Itoh Y, Goto A, Hyodo T. Phys.Rev. Lett., 2004, 92: 223201-1-42. Powell C J. Innershell ionization cross sections. In: MarkT D, Dunn G H ed. Electron Impact Ionization, New York:Springer, 1985. 198-2313. Segui S, Dingfelder M, Salvat F. Phys. Rev. A, 2003, 67:062710-1-124. Surko C M, Gribakin G F, Buckman S J. J. Phys. B, 2005,38: R57-R1265. Powell C J. Rev. Mod. Phys., 1976, 48: 33-476. Hansen H, Weigmann H, Flammersfeld A. Nucl. Phys.,1964, 58: 241-2537. Hansen H, Flammersfeld A. Nucl. Phys., 1966, 79: 135-1448. Seif el Nasr S A H, Berenyi D, Bibok G. Z. Phys., 1974,271: 207-2109. Ito S, Shimizu S, Kawaratani T, Kubota K. Phys. Rev. A,1980, 22: 407-41210. Schultz P J, Campbell J L. Phys. Lett. A, 1985, 112: 316-31811. Lennard W N, Schultz P J, Massoumi G R, Logan L R.Phys. Rev. Lett., 1988, 61: 2428-243012. Ebel F, Faust W, Hahn C, Rückert M, Schneider H, SingeA, Tobehn I. Phys. Lett. A, 1989, 140: 114-11613. Schneider H, Tobehn I, Hippler R. Phys. Lett. A, 1991,156: 303-30614. Schneider H, Tobehn I, Ebel F, Hippler R. Phys. Rev. Lett.,1993, 71: 2707-270915. WEI Long, CHEN Hong-Min, YU Run-Sheng, WANGBao-Yi, ZHANG Tian-Bao, YU Wei-Zhong, HE Yuan-Jin,WANG Tian-Min. Rev. Nucl. Phys., 2000, 17: 117-120(in Chinese)16. HAN Rong-Dian, YE Bang-Jiao, WENG Hui-Min, ZHOUXian-Yi, FAN Yang-Mei. Progress in Physics, 1999, 19:305-330 (in Chinese)17. Nagashima Y, Shigeta W, Hyodo T, Iwaki M. Radiat. Phys.Chem., 2007, 76: 465-46818. Nagashima Y, Saito F, Itoh Y, Goto A, Hyodo T. MaterialsScience Forum, 2004, 445-446: 440-44219. Llovet X, Fernández-Varea J M, Sempau J, Salvat F. Surf.Interface Anal., 2005, 37: 1054-1058
  • [1] . Nagashima Y, Saito F, Itoh Y, Goto A, Hyodo T. Phys.Rev. Lett., 2004, 92: 223201-1-42. Powell C J. Innershell ionization cross sections. In: MarkT D, Dunn G H ed. Electron Impact Ionization, New York:Springer, 1985. 198-2313. Segui S, Dingfelder M, Salvat F. Phys. Rev. A, 2003, 67:062710-1-124. Surko C M, Gribakin G F, Buckman S J. J. Phys. B, 2005,38: R57-R1265. Powell C J. Rev. Mod. Phys., 1976, 48: 33-476. Hansen H, Weigmann H, Flammersfeld A. Nucl. Phys.,1964, 58: 241-2537. Hansen H, Flammersfeld A. Nucl. Phys., 1966, 79: 135-1448. Seif el Nasr S A H, Berenyi D, Bibok G. Z. Phys., 1974,271: 207-2109. Ito S, Shimizu S, Kawaratani T, Kubota K. Phys. Rev. A,1980, 22: 407-41210. Schultz P J, Campbell J L. Phys. Lett. A, 1985, 112: 316-31811. Lennard W N, Schultz P J, Massoumi G R, Logan L R.Phys. Rev. Lett., 1988, 61: 2428-243012. Ebel F, Faust W, Hahn C, Rückert M, Schneider H, SingeA, Tobehn I. Phys. Lett. A, 1989, 140: 114-11613. Schneider H, Tobehn I, Hippler R. Phys. Lett. A, 1991,156: 303-30614. Schneider H, Tobehn I, Ebel F, Hippler R. Phys. Rev. Lett.,1993, 71: 2707-270915. WEI Long, CHEN Hong-Min, YU Run-Sheng, WANGBao-Yi, ZHANG Tian-Bao, YU Wei-Zhong, HE Yuan-Jin,WANG Tian-Min. Rev. Nucl. Phys., 2000, 17: 117-120(in Chinese)16. HAN Rong-Dian, YE Bang-Jiao, WENG Hui-Min, ZHOUXian-Yi, FAN Yang-Mei. Progress in Physics, 1999, 19:305-330 (in Chinese)17. Nagashima Y, Shigeta W, Hyodo T, Iwaki M. Radiat. Phys.Chem., 2007, 76: 465-46818. Nagashima Y, Saito F, Itoh Y, Goto A, Hyodo T. MaterialsScience Forum, 2004, 445-446: 440-44219. Llovet X, Fernández-Varea J M, Sempau J, Salvat F. Surf.Interface Anal., 2005, 37: 1054-1058
  • 加载中

Cited by

1. Han, X., Yang, W., Li, F. FPGA implementation and measurement of cusp-flattop hybrid filter shaping method for nuclear instruments[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024. doi: 10.1016/j.nima.2024.169572
2. Zhou, H., Xu, F., Xie, Y. et al. Study on gamma spectrum measurement of high-dose-rate radiation[J]. Journal of Physics: Conference Series, 2024, 2770(1): 012015. doi: 10.1088/1742-6596/2770/1/012015
3. Wang, M., Zhou, J., Wang, H. et al. Pile-up Pulse Recognition Method Based on Ballistic Deficit Shape Feature | [基于弹道亏损形状特征的堆积脉冲识别方法][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2024, 58(1): 231-238. doi: 10.7538/yzk.2023.youxian.0167
4. Zhou, H., Xu, F., Wu, F. et al. Study on Pulse Polarity Self-Adapting of Digital MCA[J]. 2023. doi: 10.1145/3654446.3654457
5. Tang, L., Li, Y., Tang, Y. et al. Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy | [基于深度学习的 LSTM 模型在 X 荧光光谱中的应用][J]. He Jishu/Nuclear Techniques, 2023, 46(7): 070502. doi: 10.11889/j.0253-3219.2023.hjs.46.070502
6. Kumar Paul, R., Das, A., Dhara, P. et al. Implementation of FPGA based real-time digital DAQ for high resolution, and high count rate nuclear spectroscopy application[J]. Journal of Instrumentation, 2023, 18(7): P07042. doi: 10.1088/1748-0221/18/07/P07042
7. Ma, X.-K., Huang, H.-Q., Huang, B.-R. et al. X-ray spectra correction based on deep learning CNN-LSTM model[J]. Measurement: Journal of the International Measurement Confederation, 2022. doi: 10.1016/j.measurement.2022.111510
8. Wang, Q., Zhang, X., Meng, X. et al. Multi-channel analyzer based on a novel pulse fitting analysis method[J]. Nuclear Engineering and Technology, 2022, 54(6): 2023-2030. doi: 10.1016/j.net.2021.12.019
9. Xiao-feng, Y., Hong-Quan, H., Guo-Qiang, Z. et al. Pulse Pile-up Correction by Particle Swarm Optimization with Double-layer Parameter Identification Model in X-ray Spectroscopy[J]. Journal of Signal Processing Systems, 2022, 94(4): 377-386. doi: 10.1007/s11265-021-01698-4
10. Hao, J., Li, F., Wang, Q. et al. Quantitative analysis of trace elements of silver disturbed by pulse pile up based on energy dispersive X-ray fluorescence (EDXRF) technique[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. doi: 10.1016/j.nima.2021.165672
11. Tang, L., Zhang, J., Shi, K. et al. Application of an improved seeds local averaging algorithm in x-ray spectrum[J]. Mathematical Problems in Engineering, 2021. doi: 10.1155/2021/5545818
12. Wang, X., Li, Z.H., Liu, Z. et al. An effective digital pulse processing method for pile-up pulses in decay studies of short-lived nuclei[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020. doi: 10.1016/j.nima.2020.164068
13. Wang, M., Hong, X., Zhou, J.-B. et al. Rising time restoration for nuclear pulse using a mathematic model[J]. Applied Radiation and Isotopes, 2018. doi: 10.1016/j.apradiso.2018.01.018
14. Hong, X., Zhou, J., Ni, S. et al. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping[J]. Journal of Synchrotron Radiation, 2018, 25(2): 505-513. doi: 10.1107/S1600577518000322
15. Hong, X., Zhou, J.-B., Zhao, X. et al. Digital on-line uranium concentration determination system design[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(10): 1004-1007.
16. Hong, X., Ni, S.-J., Zhou, J.-B. et al. Study on the relationship between the shaping parameters of trapezoidal pulse shaping algorithm and the trapezoidal pulse shape[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(2): 150-153 and 158.
Get Citation
AN Zhu, LIU Man-Tian and ZHU Jing-Jun. Study of the background in the experiments of inner-shell ionization of atoms by positron impact[J]. Chinese Physics C, 2008, 32(S2): 270-273.
AN Zhu, LIU Man-Tian and ZHU Jing-Jun. Study of the background in the experiments of inner-shell ionization of atoms by positron impact[J]. Chinese Physics C, 2008, 32(S2): 270-273. shu
Milestone
Received: 2008-07-17
Revised: 1900-01-01
Article Metric

Article Views(3024)
PDF Downloads(574)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Study of the background in the experiments of inner-shell ionization of atoms by positron impact

    Corresponding author: AN Zhu,

Abstract: One of main difficulties in the experiments of inner-shell ionization of atoms by positron impact near threshold energy region is the relatively high low-energy background, which is caused by the deposited part of energy in semi-conductor X-ray detectors of 0.511 MeV γ rays that are produced by positron annihilations in targets and target chamber. In this paper, by using the Monte Carlo method, we simulated the backgrounds for the X-ray detectors with the sensitive layer thickness of 0.3 mm and 3 mm in the case of 0.511 MeV γ rays impacting vertically on a Ti plate of 0.2 mm in thickness, and compared the simulation results with the experimental observations of the other research group and our own. Moreover, we also simulated the backgrounds for a simplified experimental setup in the case of 20 keV positrons impacting vertically on a thick Ti target and observed that the backgrounds for the X-ray detectors with the sensitive layer thickness of 0.3 mm and 3 mm, are very similar.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return