Conformal Irradiation for Moving Targets in Heavy Ion Radiotherapy with Raster-Scanning Beam Delivery System (Ⅰ) Simulations

  • Within the framework of the pilot heavy-ion therapy facility at GSI equipping an active beam delivery system of advanced raster scanning technique, the investigation of actively conformal irradiation to moving tumors using heavy ions is underway. The influences of target motion on dose homogeneity and conformity degree were theoretically studied under the condition of the active raster-scanning beam delivery system.The relationship between the target motion with different patterns and the uniformities of doses delivered by the raster scanner to different iso-energy slices of the moving target were simulated with an experimentally measured beam spill. Several strategies improving the dose homogeneity in the moving target volume were derived from these simulation results. The simulations presented in this paper provide an effective means for evaluating the dose distribution for a moving target, and the results and implications of this theoretical work establish a substantial basis for feasibility experiments of the compensation for target motion with the active raster scanner at GSI.
  • [1] . Schulz-Ertner D, Nikoghosyan A, Thilmann C et al. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58: 631—6402. Haken R, Balter J, Marsh L et al. Int. J. Radiat. Oncol. Boil. Phys., 1997, 38: 613—6173. Okumura T, Tsuji H, Tsujii H. Compensation of Target Motion. In: Ion Beams in Tumor Therapy. Linz U Ed. London: Chapman and Hall, 1995, 308—3154. Wong J, Sharpe M, Jaffray D et al. Int. J. Radiat. Oncol. Biol. Phys., 1999, 44: 911—9195. Ohara K, Okumura T, Akisada M et al. Int. J. Radiat. Oncol. Biol. Phys., 1989, 17: 853—8576. Kubo H D, Hill B C. Phys. Med. Boil., 1996, 41: 83—917. Minohara S, Kanai T, Endo M et al. Int. J. Radiat. Oncol. Biol. Phys., 2000, 47: 1097—11038. Haberer T, Becher W, Schardt D et al. Nucl. Instrum. Methods, 1993, A330: 296—3059. Kraft G. Prog. Part. Nucl. Phys., 2000, 45: S473—S54410. Shimizu S, Shirato H, Aoyama H et al. Int. J. Radiat. Oncol. Biol. Phys., 2000, 48: 471—47411. Yu C X, Jaffray D A, Wong J W. Phys. Med. Boil., 1998,43: 91—10412. Kraemer M et al. Phys. Med. Biol., 2000, 45: 329913. Kraemer M, Scholz M. Phys. Med. Biol., 2000, 45: 331914. Schlegel W, Pastyr O, Bortfeld T et al. Int. J. Radiat. Oncol. Biol. Phys., 1992, 24: 781—78715. Brusasco C et al. Nucl. Instrum. Methods, 2000, B168:57816. Li Q et al. Phys. Med. Biol., 2004, 49: 302917. Weber U, Becher W, Kraft G. Phys. Med. Biol., 2000, 45:3627—364118. Phillips M H et al. Phys. Med. Biol., 1992, 37: 22319. Spielberger B et al. Phys. Med. Biol., 2001, 46: 2889
  • [1] . Schulz-Ertner D, Nikoghosyan A, Thilmann C et al. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58: 631—6402. Haken R, Balter J, Marsh L et al. Int. J. Radiat. Oncol. Boil. Phys., 1997, 38: 613—6173. Okumura T, Tsuji H, Tsujii H. Compensation of Target Motion. In: Ion Beams in Tumor Therapy. Linz U Ed. London: Chapman and Hall, 1995, 308—3154. Wong J, Sharpe M, Jaffray D et al. Int. J. Radiat. Oncol. Biol. Phys., 1999, 44: 911—9195. Ohara K, Okumura T, Akisada M et al. Int. J. Radiat. Oncol. Biol. Phys., 1989, 17: 853—8576. Kubo H D, Hill B C. Phys. Med. Boil., 1996, 41: 83—917. Minohara S, Kanai T, Endo M et al. Int. J. Radiat. Oncol. Biol. Phys., 2000, 47: 1097—11038. Haberer T, Becher W, Schardt D et al. Nucl. Instrum. Methods, 1993, A330: 296—3059. Kraft G. Prog. Part. Nucl. Phys., 2000, 45: S473—S54410. Shimizu S, Shirato H, Aoyama H et al. Int. J. Radiat. Oncol. Biol. Phys., 2000, 48: 471—47411. Yu C X, Jaffray D A, Wong J W. Phys. Med. Boil., 1998,43: 91—10412. Kraemer M et al. Phys. Med. Biol., 2000, 45: 329913. Kraemer M, Scholz M. Phys. Med. Biol., 2000, 45: 331914. Schlegel W, Pastyr O, Bortfeld T et al. Int. J. Radiat. Oncol. Biol. Phys., 1992, 24: 781—78715. Brusasco C et al. Nucl. Instrum. Methods, 2000, B168:57816. Li Q et al. Phys. Med. Biol., 2004, 49: 302917. Weber U, Becher W, Kraft G. Phys. Med. Biol., 2000, 45:3627—364118. Phillips M H et al. Phys. Med. Biol., 1992, 37: 22319. Spielberger B et al. Phys. Med. Biol., 2001, 46: 2889
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
LI Qiang. Conformal Irradiation for Moving Targets in Heavy Ion Radiotherapy with Raster-Scanning Beam Delivery System (Ⅰ) Simulations[J]. Chinese Physics C, 2005, 29(10): 1006-1011.
LI Qiang. Conformal Irradiation for Moving Targets in Heavy Ion Radiotherapy with Raster-Scanning Beam Delivery System (Ⅰ) Simulations[J]. Chinese Physics C, 2005, 29(10): 1006-1011. shu
Milestone
Received: 2005-01-11
Revised: 1900-01-01
Article Metric

Article Views(3053)
PDF Downloads(598)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Conformal Irradiation for Moving Targets in Heavy Ion Radiotherapy with Raster-Scanning Beam Delivery System (Ⅰ) Simulations

    Corresponding author: LI Qiang,
  • Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China2 German Heavy-Ion Research Center GSI,Darmstadt 64291,Germany

Abstract: Within the framework of the pilot heavy-ion therapy facility at GSI equipping an active beam delivery system of advanced raster scanning technique, the investigation of actively conformal irradiation to moving tumors using heavy ions is underway. The influences of target motion on dose homogeneity and conformity degree were theoretically studied under the condition of the active raster-scanning beam delivery system.The relationship between the target motion with different patterns and the uniformities of doses delivered by the raster scanner to different iso-energy slices of the moving target were simulated with an experimentally measured beam spill. Several strategies improving the dose homogeneity in the moving target volume were derived from these simulation results. The simulations presented in this paper provide an effective means for evaluating the dose distribution for a moving target, and the results and implications of this theoretical work establish a substantial basis for feasibility experiments of the compensation for target motion with the active raster scanner at GSI.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return