Spin Assignments of Superdeformed Bands in Europium

  • A comprehensive investigation of the superdeformed bands observed in 142,143,144,147Eu was given. The fluctuation in the transition energies has been removed. The smoothed transition energies were fitted by the ab-expression or its modification. The spins of these bands, except for band 4 of 147Eu, have been assigned conclusively. The exit spin in 143Eu was proud to be 29/2, different from that asserted to be determined experi- mentally but remains to be confirmed. The corresponding values in 142Eu and 144Eu(a) are 21 and 28, lower than those proposed in the literature by 6 and 8 units, respectively. Two pairs of superdeformed bands in 147 Eu, i. e. bands 1,5 and bands 2,3 were proposed to be signature partners. The exit spins are 53/2 and 63/2 for the former pair, and 43/2 and 41/2 for the latter pair. In addition, both of them have a rather large de-coupling constant(≈-1), implying they are of K=1/2 and built on the single particle level ν[651]↓ or π[530] ↑. This assignment may be helpful for the studies of the so-called identical bands and pseudospin problem. The signature partner pairs observed in 144,148Eu are not included in the investigation.
  • [1] WU Chong–Shi. High Energy Phys. and Nucl. Phys., 1998, 22:71–77(in Chinese)(吴崇试. 高能物理与核物理,1998,22:71–77) 2 WU Chong–Shi, LI Zheng–Hua. High Energy Phys. and Nucl. Phys., 1999, 23: 797–802 (in Chinese )(吴崇试, 李中华高能物理与核物理,1999,23;797–802)3 WU Chong–Shi, ZHOU Zhi–Ning. High Energy Phys. and Nucl. Phys., 1999,23:1209–1215(in Chinese)(吴崇试,周治宁,高能物理与核物理,1999,23:1209–1215)4 WU Chong–Shi. High Energy Phys. and Nucl. Phys., 1998,22:48–53(in Chinese)(吴崇试. 高能物理与核物理,1998,22:48—53) 5 WU Chong–Shi. J. Ningxia Univ., (Nat. Sci. edition)., 1998, 19:297–299(in Chinese)(吴崇试. 宁夏大学学报(自然科学版),1998,19:297–299)6 LI Zhong–Hua, WU Chang–Shi. High Energy Phys. and Nucl, Phys., 2000, 24:71–76(in Chinese)(李中华,吴崇试. 高能物理与核物理,2000,24:71–76)7 HAN X L,WU C L. At. Data Nucl. Data Tables, 1999, 73:43–1508 WU Chong–Shi. High Energy Phys. and Nucl. Phys., 2000, 24:66–70(in Chinese)(吴崇试. 高能物理与核物理,2000,24:66–70)9 LI Z H, WU C S. Commun. Theor. Phys., 2000, 33:397–40410 Haslip D S, Knitz N, Flibotte S et al. Phys. Rev., 1998, C57:2196–220411 Atac A, Piiparinen M, Herskind B et al. Phys. Rev. Lett., 1993, 70:1069–107212 Lerma F, LaFosse D R, Devlin M et al. Phys. Rev., 1997, C56:R1671–1674 13 WU C S, CHENG L, LIN C Z et al. Phys. Rev., 1992, C45:2507–2510 14 Mullins S M, Flibotte S, Hackman G et al. Phys. Rev., 1995, C52:99–103
  • [1] WU Chong–Shi. High Energy Phys. and Nucl. Phys., 1998, 22:71–77(in Chinese)(吴崇试. 高能物理与核物理,1998,22:71–77) 2 WU Chong–Shi, LI Zheng–Hua. High Energy Phys. and Nucl. Phys., 1999, 23: 797–802 (in Chinese )(吴崇试, 李中华高能物理与核物理,1999,23;797–802)3 WU Chong–Shi, ZHOU Zhi–Ning. High Energy Phys. and Nucl. Phys., 1999,23:1209–1215(in Chinese)(吴崇试,周治宁,高能物理与核物理,1999,23:1209–1215)4 WU Chong–Shi. High Energy Phys. and Nucl. Phys., 1998,22:48–53(in Chinese)(吴崇试. 高能物理与核物理,1998,22:48—53) 5 WU Chong–Shi. J. Ningxia Univ., (Nat. Sci. edition)., 1998, 19:297–299(in Chinese)(吴崇试. 宁夏大学学报(自然科学版),1998,19:297–299)6 LI Zhong–Hua, WU Chang–Shi. High Energy Phys. and Nucl, Phys., 2000, 24:71–76(in Chinese)(李中华,吴崇试. 高能物理与核物理,2000,24:71–76)7 HAN X L,WU C L. At. Data Nucl. Data Tables, 1999, 73:43–1508 WU Chong–Shi. High Energy Phys. and Nucl. Phys., 2000, 24:66–70(in Chinese)(吴崇试. 高能物理与核物理,2000,24:66–70)9 LI Z H, WU C S. Commun. Theor. Phys., 2000, 33:397–40410 Haslip D S, Knitz N, Flibotte S et al. Phys. Rev., 1998, C57:2196–220411 Atac A, Piiparinen M, Herskind B et al. Phys. Rev. Lett., 1993, 70:1069–107212 Lerma F, LaFosse D R, Devlin M et al. Phys. Rev., 1997, C56:R1671–1674 13 WU C S, CHENG L, LIN C Z et al. Phys. Rev., 1992, C45:2507–2510 14 Mullins S M, Flibotte S, Hackman G et al. Phys. Rev., 1995, C52:99–103
  • 加载中

Cited by

1. Gao, Y., Di, Z., Gao, S. General mass formulas for charged Kerr-AdS black holes[J]. Physica Scripta, 2024, 99(9): 095022. doi: 10.1088/1402-4896/ad6fff
2. Sood, A., Ali, M.S., Singh, J.K. et al. Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter[J]. Chinese Physics C, 2024, 48(6): 065109. doi: 10.1088/1674-1137/ad361f
3. Pokhrel, R., Dey, T.K. Charged AdS black holes in presence of string cloud and Cardy-Verlinde formula[J]. Nuclear Physics B, 2024. doi: 10.1016/j.nuclphysb.2024.116508
4. Pokhrel, R., Sherpa, K.P., Dey, T.K. Dissipative Force on an External Quark in AdS Gauss-Bonnet Gravity with String Cloud[J]. Springer Proceedings in Physics, 2024. doi: 10.1007/978-3-031-69146-1_47
5. Pokhrel, R., Sherpa, K.P., Dey, T.K. Holographic study of drag on a probe quark in Reissner-Nordstrom AdS black hole with Gauss-Bonnet gravity and cloud of string[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2024. doi: 10.1117/12.3041616
6. Ndongmo, R., Mahamat, S., Tabi, C.B. et al. Thermodynamics of non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101299
7. Li, X.-P., Zhang, L.-C., Ma, Y.-B. et al. Thermodynamic quantities and phase transitions of five-dimensional de Sitter hairy spacetime[J]. Chinese Physics C, 2023, 47(10): 105102. doi: 10.1088/1674-1137/ace8f5
8. Alipour, M.R., Sadeghi, J., Shokri, M. WGC and WCCC of black holes with quintessence and cloud strings in RPS space[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116184
9. López, L.A., Pedraza, O. Effects of quintessence on scattering and absorption sections of black holes[J]. Indian Journal of Physics, 2023, 97(1): 285-294. doi: 10.1007/s12648-022-02373-5
10. Aounallah, H., El Moumni, H., Khalloufi, J. et al. Insight into the microscopic structure of a quintessential black hole from the quantization concept[J]. International Journal of Modern Physics A, 2022, 37(8): 2250036. doi: 10.1142/S0217751X22500361
11. Qu, Y., Tao, J., Wu, J. New Gedanken experiment on RN-AdS black holes surrounded by quintessence[J]. European Physical Journal C, 2022, 82(2): 185. doi: 10.1140/epjc/s10052-022-10120-7
12. Liang, J., Mu, B., Wang, P. Joule-Thomson expansion of lower-dimensional black holes[J]. Physical Review D, 2021, 104(12): 124003. doi: 10.1103/PhysRevD.104.124003
13. Yin, R., Liang, J., Mu, B. Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100884
14. Liang, J., Lin, W., Mu, B. Joule–Thomson expansion of the torus-like black hole[J]. European Physical Journal Plus, 2021, 136(11): 1169. doi: 10.1140/epjp/s13360-021-02119-y
15. Mustafa, G., Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds[J]. European Physical Journal C, 2021, 81(5): 419. doi: 10.1140/epjc/s10052-021-09195-5
16. Yin, R., Liang, J., Mu, B. Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence[J]. Physics of the Dark Universe, 2021. doi: 10.1016/j.dark.2021.100831
Get Citation
WU Chong-Shi and LI Zhong-Hua. Spin Assignments of Superdeformed Bands in Europium[J]. Chinese Physics C, 2001, 25(2): 121-128.
WU Chong-Shi and LI Zhong-Hua. Spin Assignments of Superdeformed Bands in Europium[J]. Chinese Physics C, 2001, 25(2): 121-128. shu
Milestone
Received: 2000-01-04
Revised: 1900-01-01
Article Metric

Article Views(2835)
PDF Downloads(586)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Spin Assignments of Superdeformed Bands in Europium

    Corresponding author: WU Chong-Shi,
  • Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, ChinaDepartment of Physics, Peking University, Beijing 100871, China

Abstract: A comprehensive investigation of the superdeformed bands observed in 142,143,144,147Eu was given. The fluctuation in the transition energies has been removed. The smoothed transition energies were fitted by the ab-expression or its modification. The spins of these bands, except for band 4 of 147Eu, have been assigned conclusively. The exit spin in 143Eu was proud to be 29/2, different from that asserted to be determined experi- mentally but remains to be confirmed. The corresponding values in 142Eu and 144Eu(a) are 21 and 28, lower than those proposed in the literature by 6 and 8 units, respectively. Two pairs of superdeformed bands in 147 Eu, i. e. bands 1,5 and bands 2,3 were proposed to be signature partners. The exit spins are 53/2 and 63/2 for the former pair, and 43/2 and 41/2 for the latter pair. In addition, both of them have a rather large de-coupling constant(≈-1), implying they are of K=1/2 and built on the single particle level ν[651]↓ or π[530] ↑. This assignment may be helpful for the studies of the so-called identical bands and pseudospin problem. The signature partner pairs observed in 144,148Eu are not included in the investigation.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return