THE CLASSIFICATION OF THE WAVE FUNCTIONS OF BOSONS AND FERMIONS

  • In this paper we have proved that the wave functions for bosons and fermionscan be classified by either of the following two Lie superalgebra chains U(2l+1/2j+1) SU(2l+1/2j+1) SU(2l+1)SU(2j+1) SO(2l+1)Sp(2j+1) SO(3)SO(3), U(2l+1/2j+1) SU(2l+1/2j+1) OSp(2l+1/2j+1) SO(2l+1)Sp(2j+1) SO(3)SO(3) The wave functions for bosons and fermions classified by the Lie superalgebra chain U(2l+1/2j+1) SU(2l+1/2j+1) SU(2l+1)SU(2j+1) SO(2l+1)Sp(2j+1) SO(3)SO(3), are calculated also.
  • 加载中
  • [1] Kac, V. G., Commun. Math. Phys., 53(1977), 31.[2] 韩其智等, 阶化李代数SU(m/n)的不可约表示, 5(1981). 546.
  • 加载中

Get Citation
SUN HONG-ZHOU and HAN QI-ZHI. THE CLASSIFICATION OF THE WAVE FUNCTIONS OF BOSONS AND FERMIONS[J]. Chinese Physics C, 1982, 6(3): 317-322.
SUN HONG-ZHOU and HAN QI-ZHI. THE CLASSIFICATION OF THE WAVE FUNCTIONS OF BOSONS AND FERMIONS[J]. Chinese Physics C, 1982, 6(3): 317-322. shu
Milestone
Received: 1980-10-13
Revised: 1900-01-01
Article Metric

Article Views(1951)
PDF Downloads(290)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

THE CLASSIFICATION OF THE WAVE FUNCTIONS OF BOSONS AND FERMIONS

Abstract: In this paper we have proved that the wave functions for bosons and fermionscan be classified by either of the following two Lie superalgebra chains U(2l+1/2j+1) SU(2l+1/2j+1) SU(2l+1)SU(2j+1) SO(2l+1)Sp(2j+1) SO(3)SO(3), U(2l+1/2j+1) SU(2l+1/2j+1) OSp(2l+1/2j+1) SO(2l+1)Sp(2j+1) SO(3)SO(3) The wave functions for bosons and fermions classified by the Lie superalgebra chain U(2l+1/2j+1) SU(2l+1/2j+1) SU(2l+1)SU(2j+1) SO(2l+1)Sp(2j+1) SO(3)SO(3), are calculated also.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return