SCALING PHENOMENA AND RENORMALIZATION GROUP

  • By acting the operator D of the renormalization group equation on the amputa-ted Green's function of N particles,we can deduce the generalized Wroblewski rela-tionship and the corresponding differential equations.Naturally,the Kendall scalingdistribution of the multiplicity is obtained.The scaling variable is proved to be N/〈N〉.Under certain conditions,the inelasticity scaling distribution is also of theKendall type.The parameter of distribution represents relative statistical fluctuationof energy in the central region.
  • 加载中
  • [1] Z. Koba, H. B. Nielson, P. Olesen, Nucl. Phys. , 40B (1972), 317. [2] D. Bondyopadhyay et al., Nuovo Cimento,, 35A(1976), 325. [3] D. Cohen, Phys. Lett. , 47B (1973), 457. [4] A. J. Sadoff et al., Phys. Rev. Lett., 32 (1975), 955. [5] G. A . Akopdjanov et al., Nucl. Phys., 75B (1974), 257. V. E. Barnes et al., Phys. Rev. Lett, 34 (1975), 415;I. W. Chapman at al., Phys. Rev. Lett., 36 (1976),124. [6] F. T. Dao et al., Phys. Rev. Lett., 33 (1974). 389. [7] V. M. Hagman et al., Phys. Scr. (Sweden) 14 (1376), 24. [8] K. G. Wilson, Rev. Mod. Phys., 47(1975), 773. [9] W. Ernst et al., Nuovo Cimento, 31A (1976), 109. [10] E. Parzen, Stochastic Processes (Holanden-Day, INC). 1962. [11] D. G. Kendall, On the Role of Variablc Generation time in the Development of a Stochastie. Birth Process, Biometrika. Vol. 35 pp. 316-330. 1948. 强子多重数的Kendall标度分布可以从不同的假定得出: N. Suzuki, Prog. Theor. Phys., 51 (1974), 1629. 此文假定强子一强子碰撞产生五个集团(α=5),从光子计数分布得到Kendall分布,只当Nch=8时[9]与实验符合;《基本粒子及超高能核作用模型简介》,云南大学物理系高能短训班讲义,1975, 从π介子受激发射假设出发得到Kendall标度分布:从重整化群及Wroblewski关系出发得到多重数的Kendall标度分布; B. Carazza et al., Lett. al Nuovo Cimento 15 (1976), 553. 此文从Wroblewski关系及信息论考虑得出多重数的Kendall标度分布; D. P. Bhattacharyya et al., Indian . J. Phys., 50 (1976), 18. 此文也是从Wroblewski关系导出多重数的Kendall标度分布. [12a] E. L. Feinberg, Phys. Lett. C (Phys. Rep), 5 (1972), 269. [12b] Y-A. Chao. Nucl. Phys., 40B(1972),475. [13] C. Fzell et al., Phys. Rev. Lett., 38 (1977), 873.[14] D. Lurie, Partieles and Fields, §3-5, Iuterscience Publishers, 1968.[15] P. Slattery, Phys. Rev., D7 (1973), 2073.[16] C. Bromberg et al., Phys. Rev. Lett., 31 (1973). 1563.
  • 加载中

Get Citation
ZHAO SHU-SONG, PENG SHOU-LI and YU CHUAN-ZAN. SCALING PHENOMENA AND RENORMALIZATION GROUP[J]. Chinese Physics C, 1979, 3(4): 387-392.
ZHAO SHU-SONG, PENG SHOU-LI and YU CHUAN-ZAN. SCALING PHENOMENA AND RENORMALIZATION GROUP[J]. Chinese Physics C, 1979, 3(4): 387-392. shu
Milestone
Received: 1977-11-10
Revised: 1900-01-01
Article Metric

Article Views(1695)
PDF Downloads(442)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

SCALING PHENOMENA AND RENORMALIZATION GROUP

Abstract: By acting the operator D of the renormalization group equation on the amputa-ted Green's function of N particles,we can deduce the generalized Wroblewski rela-tionship and the corresponding differential equations.Naturally,the Kendall scalingdistribution of the multiplicity is obtained.The scaling variable is proved to be N/〈N〉.Under certain conditions,the inelasticity scaling distribution is also of theKendall type.The parameter of distribution represents relative statistical fluctuationof energy in the central region.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return