Spectroscopy for the Bound States of a Top Squark (t) and a Heavy Quark

  • Based on the possibility that the life time of the lightest top squark 1(1) may be long enough and it may form a bound state with another quark before its decay has not been ruled out yet, we focus on the bound states of the lightest top squark 1(1) and a heavy quark Q(), and establish the Bethe Salpeter equation for the binding systems (c1) and (b1) (or their antiparticles) etc with QCD inspired kernel. We then investigate these systems and give their spectroscopy by means of instantaneous approximation.
  • [1] . Haber H E, Kane G L. Phys. Reports,1985,117:75;Nills H P. Phys. Reports,1984,110:1;Weinberg S. The Quantum Theory of Field, Ⅷ2. ALEPH. Phys. Lett.,1998,B434:189 3. Ken-ichi Hikasa, Makoto Kobayashi. Phys. Rev.,1987,D36:724 4. OPAL. Z. Phys.,1997,C75:409;Phys. Lett.,1999,B456:955. L3. Phys. Lett.,1999,B445:428 6. CDF. Fermilab Conf-99/117-E 7. Boehm C, Djouadi A, Mambrini Y. Phys. Rev.,2000,D61:095006 8. CHANG Chao-Hsi, CHEN Yu-Qi. Phys. Rev.,1994,D49:3399;CHANG Chao-Hsi, CHEN Yu-Qi. Coum. Theor. Phys.,1995,23:451;CHANG Chao-Hsi. hep- ph/9906355, Proceedings of the Recent Advances and Cross-Centrury Outlooks, P113, Eds:P. Chen, C. Y. Wong, Publisher:World Scientific9. Salpeter E E, Bethe H A. Phys. Rev.,1951,84:1232;Salpeter E E. Phys. Rev.,1952,87:328 10. Bruce Mainland G. hep-th/000505811. Eichten E, Gottfried K, Kinoshita T et al. Phys. Rev.,1978,D17:3090;1980,21:313(E);1980,21:203 12. Quigg C, Rosner J L. Phys. Lett.,1977,71B :153 13. Eichten E, Quigg C. Phys. Rev.,1994,D49:5848
  • [1] . Haber H E, Kane G L. Phys. Reports,1985,117:75;Nills H P. Phys. Reports,1984,110:1;Weinberg S. The Quantum Theory of Field, Ⅷ2. ALEPH. Phys. Lett.,1998,B434:189 3. Ken-ichi Hikasa, Makoto Kobayashi. Phys. Rev.,1987,D36:724 4. OPAL. Z. Phys.,1997,C75:409;Phys. Lett.,1999,B456:955. L3. Phys. Lett.,1999,B445:428 6. CDF. Fermilab Conf-99/117-E 7. Boehm C, Djouadi A, Mambrini Y. Phys. Rev.,2000,D61:095006 8. CHANG Chao-Hsi, CHEN Yu-Qi. Phys. Rev.,1994,D49:3399;CHANG Chao-Hsi, CHEN Yu-Qi. Coum. Theor. Phys.,1995,23:451;CHANG Chao-Hsi. hep- ph/9906355, Proceedings of the Recent Advances and Cross-Centrury Outlooks, P113, Eds:P. Chen, C. Y. Wong, Publisher:World Scientific9. Salpeter E E, Bethe H A. Phys. Rev.,1951,84:1232;Salpeter E E. Phys. Rev.,1952,87:328 10. Bruce Mainland G. hep-th/000505811. Eichten E, Gottfried K, Kinoshita T et al. Phys. Rev.,1978,D17:3090;1980,21:313(E);1980,21:203 12. Quigg C, Rosner J L. Phys. Lett.,1977,71B :153 13. Eichten E, Quigg C. Phys. Rev.,1994,D49:5848
  • 加载中

Cited by

1. Han, X., Yang, W., Li, F. FPGA implementation and measurement of cusp-flattop hybrid filter shaping method for nuclear instruments[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024. doi: 10.1016/j.nima.2024.169572
2. Zhou, H., Xu, F., Xie, Y. et al. Study on gamma spectrum measurement of high-dose-rate radiation[J]. Journal of Physics: Conference Series, 2024, 2770(1): 012015. doi: 10.1088/1742-6596/2770/1/012015
3. Wang, M., Zhou, J., Wang, H. et al. Pile-up Pulse Recognition Method Based on Ballistic Deficit Shape Feature | [基于弹道亏损形状特征的堆积脉冲识别方法][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2024, 58(1): 231-238. doi: 10.7538/yzk.2023.youxian.0167
4. Zhou, H., Xu, F., Wu, F. et al. Study on Pulse Polarity Self-Adapting of Digital MCA[J]. 2023. doi: 10.1145/3654446.3654457
5. Tang, L., Li, Y., Tang, Y. et al. Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy | [基于深度学习的 LSTM 模型在 X 荧光光谱中的应用][J]. He Jishu/Nuclear Techniques, 2023, 46(7): 070502. doi: 10.11889/j.0253-3219.2023.hjs.46.070502
6. Kumar Paul, R., Das, A., Dhara, P. et al. Implementation of FPGA based real-time digital DAQ for high resolution, and high count rate nuclear spectroscopy application[J]. Journal of Instrumentation, 2023, 18(7): P07042. doi: 10.1088/1748-0221/18/07/P07042
7. Ma, X.-K., Huang, H.-Q., Huang, B.-R. et al. X-ray spectra correction based on deep learning CNN-LSTM model[J]. Measurement: Journal of the International Measurement Confederation, 2022. doi: 10.1016/j.measurement.2022.111510
8. Wang, Q., Zhang, X., Meng, X. et al. Multi-channel analyzer based on a novel pulse fitting analysis method[J]. Nuclear Engineering and Technology, 2022, 54(6): 2023-2030. doi: 10.1016/j.net.2021.12.019
9. Xiao-feng, Y., Hong-Quan, H., Guo-Qiang, Z. et al. Pulse Pile-up Correction by Particle Swarm Optimization with Double-layer Parameter Identification Model in X-ray Spectroscopy[J]. Journal of Signal Processing Systems, 2022, 94(4): 377-386. doi: 10.1007/s11265-021-01698-4
10. Hao, J., Li, F., Wang, Q. et al. Quantitative analysis of trace elements of silver disturbed by pulse pile up based on energy dispersive X-ray fluorescence (EDXRF) technique[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. doi: 10.1016/j.nima.2021.165672
11. Tang, L., Zhang, J., Shi, K. et al. Application of an improved seeds local averaging algorithm in x-ray spectrum[J]. Mathematical Problems in Engineering, 2021. doi: 10.1155/2021/5545818
12. Wang, X., Li, Z.H., Liu, Z. et al. An effective digital pulse processing method for pile-up pulses in decay studies of short-lived nuclei[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020. doi: 10.1016/j.nima.2020.164068
13. Wang, M., Hong, X., Zhou, J.-B. et al. Rising time restoration for nuclear pulse using a mathematic model[J]. Applied Radiation and Isotopes, 2018. doi: 10.1016/j.apradiso.2018.01.018
14. Hong, X., Zhou, J., Ni, S. et al. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping[J]. Journal of Synchrotron Radiation, 2018, 25(2): 505-513. doi: 10.1107/S1600577518000322
15. Hong, X., Zhou, J.-B., Zhao, X. et al. Digital on-line uranium concentration determination system design[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(10): 1004-1007.
16. Hong, X., Ni, S.-J., Zhou, J.-B. et al. Study on the relationship between the shaping parameters of trapezoidal pulse shaping algorithm and the trapezoidal pulse shape[J]. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2016, 36(2): 150-153 and 158.
Get Citation
CHEN Jiao-Kai, FANG Zhen-Yun, HU Bing-Quan and ZHANG Zhao-Xi. Spectroscopy for the Bound States of a Top Squark (t) and a Heavy Quark[J]. Chinese Physics C, 2002, 26(8): 766-772.
CHEN Jiao-Kai, FANG Zhen-Yun, HU Bing-Quan and ZHANG Zhao-Xi. Spectroscopy for the Bound States of a Top Squark (t) and a Heavy Quark[J]. Chinese Physics C, 2002, 26(8): 766-772. shu
Milestone
Received: 2001-12-29
Revised: 1900-01-01
Article Metric

Article Views(3823)
PDF Downloads(593)
Cited by(16)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Spectroscopy for the Bound States of a Top Squark (t) and a Heavy Quark

    Corresponding author: CHEN Jiao-Kai,
  • Department of Physics, University of Chongqing, Chongqing 400044, China2 Institute of Theoretical Physics, CAS, Beijing 100080, China

Abstract: Based on the possibility that the life time of the lightest top squark 1(1) may be long enough and it may form a bound state with another quark before its decay has not been ruled out yet, we focus on the bound states of the lightest top squark 1(1) and a heavy quark Q(), and establish the Bethe Salpeter equation for the binding systems (c1) and (b1) (or their antiparticles) etc with QCD inspired kernel. We then investigate these systems and give their spectroscopy by means of instantaneous approximation.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return