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First attempt to overcome the disaster of Dirac sea

in imaginary time step method *
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Abstract Efforts have been made to solve the Dirac equation with axially deformed scalar and vector Woods-

Saxon potentials in the coordinate space with the imaginary time step method. The results of the single-

particle energies thus obtained are consistent with those calculated with the basis expansion method, which

demonstrates the feasibility of the imaginary time step method for the relativistic static problems.
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1 Introduction

The relativistic mean field (RMF) theory[1] has

received lots of attention due to its successful de-

scription of numerous nuclear phenomena from infi-

nite nuclear matter to finite nuclei[2, 3]. It is also one

of the best candidates for the theoretical description

of exotic nuclei[4]. To describe the extremely weakly

binding properties of these exotic nuclei, it is desired

to solve the Dirac equation directly in coordinate

space. For spherical system, the conventional shoot-

ing method could solve the Dirac equation without

any difficulties. However, when it comes to deformed

system, the shooting method for coupled channels[5]

or Woods-Saxon basis expansion method[6] becomes

more complicated and difficult.

On the other hand, the imaginary time step

(ITS) method[7] is an alternative to solve the

static problems in coordinate space, which has been

well-developed in non-relativistic framework on 3-

dimensional Cartesian mesh[8]. This method is a kind

of gradient methods[9, 10], which searches for the di-

rection of steepest descent of energy and follows it in

iterative steps until the local minimum on the energy

surface is reached.

Therefore, it is natural to introduce the ITS

method to the deformed relativistic system. However,

its feasibility has been doubted for years due to the

existence of negative energy solutions of Dirac equa-

tion. Since ITS method always starts from finding the

lowest state in the equation of motion, it becomes a

disaster as there is no bottom in the Dirac sea.

In this paper, we attempt to adopt the ITS

method to solve the Dirac equation with axially de-

formed scalar and vector Woods-Saxon potentials in

the coordinate space, and try to overcome the disaster

of Dirac sea.

In Section 2, the principle of ITS method and its

application in relativistic framework are presented.

Section 3 is devoted to numerical details and the cor-

responding results. The summary and conclusions are

given in Section 4.

2 Imaginary time step method to

solve deformed Dirac equation

The imaginary time step (ITS) method[7] is
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inspired by the technique employed to solve the time-

dependent Hartree-Fock (TDHF) equation,

i~
∂ϕj

∂ t
= ĥ(t)ϕj(t), j = 1, ...,A. (1)

The solution {ϕ(n+1)
j } of the above equation at time

tn+1 = (n+1)∆t can be approximated by

|ϕ(n+1)
j 〉= exp

(

− i

~
∆tĥ(n+ 1

2
)

)

|ϕ(n)
j 〉, (2)

in which ĥ(n+ 1

2
) is the numerical approximation to the

single-particle hamiltonian ĥ(t) at time (n+ 1
2
)∆t.

If the time step ∆t is real, the operator

exp

(

− i

~
∆tĥ(n+ 1

2
)

)

indicates a unitary transforma-

tion between the wave functions at two immediate

time steps, which could guarantee the orthogonality

of the initial set of wave functions, and thus the con-

servation of the total energy during the time evolu-

tion.

When the real time step ∆t in Eq. (2) is replaced

by an imaginary one −i∆t (∆t is still real in this ex-

pression, λ≡∆t/~), the transformation Eq. (2) reads

|Ψ (n+1)
j 〉 = exp

(

−λĥ(n+ 1

2
)
)

|ϕ(n)
j 〉=

(

1−λĥ(n+ 1

2
)
)∣

∣

∣ϕ
(n)
j

〉

+O(λ2). (3)

In this case, the operator in Eq. (3) does not guar-

antee the orthogonality of wave functions during the

time evolution. Then, it could be demonstrated that

after orthogonalization the total energy will decrease

as the time evolves, until it converges to a stable state,

which is the static solution of the Hartree-Fock equa-

tion.

The attempt here will be made to apply ITS

method to solve Dirac equation with given potentials,

{α ·p+β [m+S(r)]+V (r)}ϕi = εiϕi. (4)

When an axial deformation is adopted for the system,

the Dirac spinor ϕi takes the form of[11]

ϕi =
1√
2π
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where f±

i and g±

i are the upper and lower compo-

nents, Ωi is the projection of total angular momentum

along the symmetry axis, χτi
(τ) is the pauli matrix for

isospin. Correspondingly, the Dirac equation Eq. (4)

in the cylindrical coordinates could be reduced to











































V +M∗ 0 ∂z ∂r⊥+
Ω+

1

2
r⊥

0 V +M∗ ∂r⊥−
Ω− 1

2
r⊥

−∂z

−∂z −






∂r⊥+

Ω+
1

2
r⊥






V −M∗ 0

−






∂r⊥−

Ω− 1

2
r⊥






∂z 0 V −M∗























































f+
i

f−

i

g+
i

g−

i













= εi













f+
i

f−

i

g+
i

g−

i













, (6)

with M∗ = m+S(z,r⊥). The 4×4 matrix operator on

the l.h.s. in Eq. (6) is thus the single-particle hamil-

tonian ĥ which could be used in the imaginary time

evolution in Eq. (3).

Referring to the application of ITS method in non-

relativistic framework, we rewrite the above Dirac

equation Eq. (6) to Schrödinger-like equation for the

upper component, then evolve the upper components

as Eq. (3), and obtain the lower components by the

relation of

(

g+
i

g−

i

)

=
−1

M∗
i
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(7)

where M∗

i = M∗−V +εi.

3 Numerical details and results

As a first attempt, the scalar and vector potentials

in Dirac equation Eq. (4) take the form of axially de-
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formed Woods-Saxon potentials[12]. In this case, the

single-particle states are labeled by good quantum

numbers (Ω,π). To evolve the single-particle wave

functions, we take the axially deformed Harmonic Os-

cillator bases for the upper components, and zero for

the lower components as a set of orthogonal initial

wave functions,

f±

i (z,r⊥) → φnz
(z)φml

nr
(r⊥)χ±

1

2

(s), (8a)

g±

i (z,r⊥) → 0, (8b)

where

φnz
(z) =

Nnz√
bz

Hnz
(ζ)e−ζ2/2,

(

ζ =
z

bz

, Nnz
=

1
√√

π2nznz!

)

, (9a)

φml

nr
(r⊥) =

Nml

nr

b⊥

√
2ηml/2Lml

nr
(η)e−η/2,

(

η =
r2
⊥

b2
⊥

, Nml

nr
=

√

nr!

(nr +ml)!

)

. (9b)

During the time evolution, the wave functions are

confined in a box (0 6 r⊥ 6 Lr⊥ , −Lz 6 z 6 Lz),

with mesh sizes dr⊥ and dz respectively.

After the evolution in Eq. (3), the set of wave func-

tions {Ψ (n+1)
j } is orthogonalized by Gram-Schmidt or-

thogonalization method. Then a new set of orthogo-

nal wave functions {ϕ(n+1)
j } is obtained, which will go

on for the next step of evolution and orthogonaliza-

tion. The above procedure is iterated until the final

convergence is reached.

Table 1 shows the single-particle energies calcu-

lated by the ITS method compared with the basis

expansion method for the nucleus 16O. In the present

calculation, we take a deformation β = 0.1 for the

scalar and vector Woods-Saxon potentials, with the

Coulomb interaction included for protons. For the

ITS method, the box size is Lr⊥ = Lz = 12 fm, with

the mesh dr⊥ = dz = 0.3 fm, the corresponding imag-

inary time step is ∆t = 5 × 10−26 s. In the basis

expansion method, we take 8 shells for both fermion

and boson.

It can be seen from the comparison in Table 1

that the ITS method could give the results consistent

with those calculated by the basis expansion method

within the precision tolerance.

Table 1. Single-particle energis for neutron and

proton calculated by ITS method compared

with basis expansion (BE) method for the

nucleus 16O in Woods-Saxon potentials with

β = 0.1.

neutron proton

ITS BE ITS BE

(Ω)π εi/MeV εi/MeV εi/MeV εi/MeV
(1

2

)+
−43.547 −43.216 −40.386 −40.096

(1

2

)−

−25.668 −25.524 −23.441 −23.310

(3

2

)−

−24.111 −24.085 −21.788 −21.773

(1

2

)−

−19.015 −18.871 −18.283 −18.146

(1

2

)+
−8.636 −8.541 −6.825 −6.733

(3

2

)+
−7.819 −7.831 −5.939 −5.954

(5

2

)+
−6.637 −6.587 −4.666 −4.619

(1

2

)+
−3.703 −3.273 −2.640 −2.339

(1

2

)+
−1.812 −1.455 −1.277 −0.962

(3

2

)+
−0.715 −0.386 −0.128 0.074

4 Summary and conclusions

The first attempt has been made to apply the

imaginary time step method, which has been widely

used in non-relativistic static problems, for the Dirac

equation with axially deformed scalar and vector

Woods-Saxon potentials. First results obtained show

that this method is also feasible in the relativistic

framework. The single-particle energies obtained in

this way are consistent with the conventional basis

expansion method. More systematical investigations

along this line including the numerical checks and de-

tails of the calculation are in preparation and will be

published elsewhere.
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