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Hadron properties from QCD bound-state equations:

A status report*
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Abstract Employing an approach based on the Green functions of Landau-gauge QCD, some selected results

from a calculation of meson and baryon properties are presented. A rainbow-ladder truncation to the quark

Dyson-Schwinger equation is used to arrive at a unified description of mesons and baryons by solving Bethe-

Salpeter and covariant Faddeev equations, respectively.
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1 Motivation:

why functional approaches to QCD?

The central aim of the studies reported here is

to develop a QCD–based description of the structure

of hadrons in terms of quarks and gluons. Theoret-

ical issues such as confinement, dynamical breaking

of chiral symmetry and the formation of relativistic

bound states can be understood from and related to

the properties of QCD’s Green functions. Significant

progress within functional approaches has recently

been achieved especially in Landau gauge, see e.g.

Refs. [1–4]. Hereby it should be noted that differ-

ent pictures of confinement are not necessarily mutu-

ally exclusive but may describe different facets of this

phenomonen, see Ref. [5] and references therein. The

advantage of employing Green function methods is

given by the fact that these Green functions provide

the input for QCD’s bound state equations which, in

turn, can be used to calculate hadron properties. The

Green functions of elementary fields are determined

by Dyson-Schwinger equations, Exact Renormaliza-

tion Group equations, and/or lattice calculations. It

should be noted that dynamical breaking of chiral

symmetry leads to the generation of quark masses

and scalar quark-gluon interactions [3, 6].

Any numerical solution of QCD’s bound state

equations, i.e. the Bethe-Salpeter equation for

mesons and the Faddeev equation for baryons, re-

quires Green functions of quarks and gluons as input,

which in turn necessitates a truncation of the cor-

responding functional equations. The results which

will be presented in this status report build upon a

rainbow-ladder truncation, i.e. a dressed-gluon ex-

change, for mesons and baryons in a unified approach

[7–11]. A symmetry-preserving extension to more

realistic kernels is on its way for mesons, see [12]

and references therein. For baryons as three-quark

states, the covariant Faddeev equation in rainbow-

ladder truncation has been solved only recently [13].

2 Bound state equations and rainbow-

ladder truncation

Hadrons, being bound states of quarks, appear as

poles in the qq̄ and qqq scattering matrices. Hadron

properties can be extracted upon solving bound-state

equations which are valid at these poles and need the

elementary QCD Green functions as input:

Ψ = K̃(n) Ψ . (1)

Here Ψ is the bound-state amplitude defined on the

hadron’s mass shell, and K̃(2) = K(2)SS, K̃(3) =
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K(3)SSS are the renormalization-group invariant

products of the respective kernel K(n) with two or

three dressed quark propagators.

These fully Poincaré-covariant bound-state equa-

tions provide a tool to calculate experimentally acces-

sible hadron observables, e.g. meson and baryon mass

spectra, decay constants, scattering processes, and

electromagnetic properties such as form factors, mag-

netic moments and charge radii (see e.g. Refs. [8, 14]

and references therein). To proceed with the nu-

merical solution of a covariant bound-state equation

like the Bethe-Salpeter or the Faddeev equation, one

needs to specify all ingredients: the interaction ker-

nels and the dressed quark propagator which ap-

pear in these integral equations. These Green func-

tions can be determined either from functional equa-

tions and/or lattice calculations. In addition, they

are related via Slavnov-Taylor and Ward-Takahashi

identities. With respect to the pion, the would-be

Goldston boson of chiral symmetry, the axial-vector

Ward-Takahashi identity plays a special role. If it is

satisfied by the interaction kernels in related equa-

tions, this correctly implements chiral symmetry and

its dynamical breaking, leading e.g. to a general-

ized Gell-Mann–Oakes–Renner relation which is valid

for all pseudoscalar mesons and all current-quark

masses [15, 16]. In particular, the pion is massless

in the chiral limit independent of the details of the

interaction.

Although the structure of the kernel is restricted

by the above mentioned identities, to construct a

symmetry-preserving truncation of the bound-state

equations is a non-trivial task. The rainbow-ladder

truncation provides such a symmetry-preserving

scheme. Instead of interaction kernels being func-

tions of the quark and gluon momenta one needs

a functional form for the interaction as a function

of the gluon momentum only. The non-perturbative

dressing of the gluon propagator and the quark-gluon

vertex are “absorbed” into an effective coupling for

which we adopt a widely-employed ansatz [17, 18].

It reproduces the logarithmic decrease of QCD’s one-

loop perturbative running coupling at high momenta,

and its infrared contribution is parametrized by an

infrared scale and a dimensionless parameter (for de-

tails, see Ref. [18]). Especially, it yields the non-

perturbative enhancement at intermediate gluon mo-

menta necessary to generate dynamical chiral sym-

metry breaking, and hence a constituent-quark mass

scale. We emphasize here that the input of the Fad-

deev equation is completely specified at the beginning

with all parameters already fixed from a few meson

properties. In addition, we want to note that the re-

sulting quark propagator is in very good agreement

with corresponding results of fully coupled Dyson-

Schwinger, resp., Functional Renormalization Group

equations and of lattice calculations.

3 Baryons: quark-diquark model

As the amplitudes resulting from a fully relativis-

tic Faddeev equation are of high complexity it is natu-

ral to look first for an approximation keeping Poincaré

invariance and the relation to QCD Green functions.

A well-studied approximation of this type is based

on using diquark correlations as effective degrees of

freedom.

The motivation for studying diquark correlations

has been the observation of a strong attraction in the

SU(3)C antitriplet qq channel, e.g. in lattice [19–24]

and Bethe-Salpeter [25, 26] studies. Such an attrac-

tion has also been proposed to explain missing ex-

otic states in the hadron spectrum and the masses

of light scalar mesons [27, 28]. Further support for

the diquark concept has been provided by a study of

diquark confinement in Coulomb-gauge QCD [29].

These arguments lead to the assumption that cor-

relations between two quarks provide the dominant

attraction not only in meson but also in baryon chan-

nels. Consequently, the quark-diquark model traces

the nucleon’s binding to the intrinsic formation of col-

ored scalar- and axialvector diquarks. It treats such

two-quark correlations as a separable pole sum in the

qq scattering matrix which leads to a description of

baryons as bound states of effective quarks and di-

quarks. In this way the covariant Faddeev equation

(see Section 4) is simplified to a two-body bound-state

equation (see Fig. 1) while full Poincaré covariance is

maintained.

Nucleon and ∆ properties have been studied in a

quark-diquark model with parametrized ingredients,

see e.g. [30–33] and references therein. The approach

was subsequently extended to determine the dynam-

ics of 0+ and 1+ diquarks from their underlying quark

and gluon constituents [8–11, 34] where parametriza-

tions for the diquark amplitudes were removed and

replaced by solutions of the corresponding diquark

Bethe-Salpeter equations.

The identification of colored diquarks as poles in

the qq scattering matrix is possible within a rainbow-

ladder truncation: one obtains timelike 0+, 1+, . . .

diquark poles. The corresponding mass scales play

an important role in the description of light baryons.

These poles, however, correspond to unphysical
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asymptotic states and disappear from the spectrum

when going beyond rainbow-ladder. The obtained

rainbow-ladder diquark masses exhibit large sensitiv-

ities to an effective width parameter of the rainbow-

ladder interaction kernel, a feature which has previ-

ously been observed in Ref. [25].

Fig. 1. (color online). The quark-diquark BSE in pictorial form.

Fig. 2. (color online). Faddeev equation (2) in rainbow-ladder truncation.

The results for nucleon and ∆ masses employ-

ing the quark-diquark bound state equation (Fig. 1)

are shown in the left panel of Fig. 3 together with

a selection of lattice results. The corresponding ab-

scissa values m2
π
, as well as mρ, are obtained from the

pseudoscalar and vector-meson Bethe-Salpeter equa-

tions in one consistent calculation. The findings are

qualitatively similar to those for mρ: setup A, where

the coupling strength is adjusted to the experimental

value of fπ, agrees with the lattice data. This be-

haviour can be understood in light of a recent study of

corrections beyond rainbow-ladder truncation which

suggests a near cancellation in the ρ-meson of pionic

effects and non-resonant corrections from the quark-

gluon vertex [12]. Setup B provides a description of

a quark core which on purpose overestimates the ex-

perimental values (see the discussion below) while it

approaches the lattice results at larger quark masses.

Fig. 3. (color online). (right panel adapted from Ref.[13]) Evolution with m2
π of mρ, MN and M∆ compared

to lattice data [8, 11]; the right panel compares the quark-diquark and Faddeev results for the nucleon mass.

Dashed and dashed-dotted lines correspond to setup A (i.e. fπ is fixed as input); the solid line for mρ and

the bands for MN and M∆ are the results of setup B (advertent inflation of hadronic observables to leave

room for pionic corrections), where the variation w.r.t. to the interaction width parameter is explicitly taken

into account to provide error estimates. Dots denote the experimental values.
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4 Baryons: covariant Faddeev equa-

tion

A formalism to treat the three-body bound-state

problem through the analogue of the two-body Bethe-

Salpeter equation was formulated in Refs. [35, 36],

see [37] for an overview. The corresponding covariant

Faddeev equation describes the baryon as a bound

state of three spin-1/2 valence quarks (cf. Fig. 2):

Ψ = K̃(3) Ψ , K̃(3) = K̃ irr
(3) +

3∑

a=1

K̃(a)

(2) , (2)

where the interaction kernel K̃(3) comprises a three-

quark irreducible contribution and the sum of per-

muted two-quark kernels whose quark-antiquark ana-

logues appear in a meson Bethe-Salpeter equation.

The subscript a denotes the respective accompanying

spectator quark.

The QCD Green functions once more provide a

way to embed this equation in a consistent quantum-

field theoretical setup. Its dynamical ingredients can

then be treated in perfect correspondence with stud-

ies of quark and meson properties. A solution of

the equation relies upon knowledge of the dressed

quark propagator and the three-quark kernel. A nu-

merically solvable form of this equation is based on

the specification and decomposition of the Poincaré-

covariant baryon amplitude.

Recently a fully Poincaré-covariant computation

of the nucleon’s Faddeev amplitude was performed

in such a unified treatment [13, 38]. The assump-

tion of dominant quark-quark correlations motivates

the omission of the three-body irreducible contribu-

tion from the full three-quark kernel in Eq. (2). The

numerical solution of the Faddeev equation is then

performed after truncating the interaction kernel to

a dressed gluon-ladder exchange between any two

quarks, thereby making a direct comparison with cor-

responding meson studies meaningful. Further in-

sight into the structure of baryons is provided by

contrasting the results to those of investigations of

baryons in the quark-diquark model.

The resulting nucleon mass MN and its evolution

with m2
π

is plotted in the right panel of Fig. 3. A com-

parison to the consistently obtained quark-diquark

model result exhibits a discrepancy of only ∼ 5%.

This surprising and reassuring result indicates that a

description of the nucleon as a superposition of scalar

and axial-vector diquark correlations that interact

with the remaining quark provides a close approxima-

tion to the consistent three-quark nucleon amplitude.

By construction, the rainbow-ladder truncation

omits all mesonic dressings of baryons. As pionic ef-

fects are certainly important for all hadrons this leads

to the idea of changing the effective interaction such

to advertently inflate the ρ mass (Set B in Fig. 3) and

thus to leave room for pionic corrections at small pion

masses. It can be seen that such a treatment effects

also the baryon masses in a way which provides room

for further attraction by pions.

5 Nucleon electromagnetic form fac-

tors

In order to calculate the nucleon’s electromag-

netic form factors in the given approach one has to

relate the nucleon’s electromagnetic current to the

underlying description of the nucleon as a compos-

ite object. To this end the baryon must be resolved

into its constituents to each of which the current can

couple. A systematic procedure for the construction

of a hadron-photon vertex based on electromagnetic

gauge invariance [39–41] yields for the current opera-

tor

Jµ =−Ψ̄f (G
µ

0 +G0 Kµ G0)Ψi , (3)

where G0 denotes the product of dressed propagators

and K the kernel which appears in the respective

bound-state equation. In the quark-diquark model,

the incoming and outgoing baryon states are de-

scribed by quark-diquark amplitudes Φi, Φf . Upon

interaction with the external current, the baryon is

resolved into its constituents: quark and diquark and

the interaction between them. To each of these ele-

ments the current couples [34, 42].

Previous nucleon form factor studies performed

within the quark-diquark model [30, 31, 42–45] share

some common caveats. First, as already indicated

above pionic contributions play an important role in

the low-energy and small-quark mass behavior of the

nucleon’s electromagnetic structure. Such effects are

not included in a quark-diquark ’core’ and must be

added on top of it [32, 46–48]. Second, access to

the large-Q2 region and thereby to the truly per-

turbative domain is so far only feasible upon imple-

menting pole-free model propagators which, in turn,

exhibit essential singularities at timelike infinity, cf.

Ref. [49]. The problem of taking into account the real-

istic analytic structure of the quark propagator is not

of fundamental concern; it merely awaits a thorough

numerical treatment. Third, the quark-mass depen-

dence of magnetic moments and charge radii, while

emerging naturally in lattice calculations, is practi-

cally inaccessible in a quark-diquark model due to
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the unknown mass dependence of the modeled ingre-

dients.

The rainbow-ladder based quark-diquark ap-

proach described in Section 3 removes the latter ob-

stacle. Upon resolving the diquarks’ substructure,

the form factors are immediately related to the pa-

rameters in the effective quark-gluon coupling α(k2),

in particular: its quark-mass dependent coupling

strength. Here we restrict ourselves to the quark

’core model’ which represents a quark-diquark core

that needs to be dressed by meson-cloud effects. A

comparison of the core’s static properties with lattice

results is appropriate at larger quark masses; form

factors depending on the photon momentum may be

compared to experiment at Q2 & 2 GeV2 where pion-

cloud effects are diminished.

The nucleon’s Dirac and Pauli radii r1 and r2 are

shown in Fig. 4 and follow a similar pattern as the

pion charge radius [18]: they are weakly dependent

on the width parameter of the interaction and agree

with lattice data at larger quark masses where the

’quark core’ becomes the baryon. A natural feature

of a quark-diquark model is the negativity of F n

1 (Q2).

The presence of an axial-vector dd diquark correla-

tion centers the d-quark in the neutron and induces

ru
1 > rd

1 [11].

Fig. 4. (color online). (adapted from Ref. [9]) Quark-diquark model results for the squared isovector radii

(corresponding to the Dirac and Pauli form factors F v

1,2 = F
p

1,2 − F n

1,2) in setup B, compared to lattice

results[50, 51].

Only the components transverse to the photon

momentum, i.e. those not constrained by current con-

servation, determine the physical form factor content.

The respective contribution to the quark-photon ver-

tex is known from its inhomogeneous Bethe-Salpeter

solution [52] and includes a ρ-meson pole which

amounts to ∼ 50% of both pion and nucleon squared

charge radii. The available information on those parts

at larger Q2, especially for the diquark-photon ingre-

dients, is limited within the scope of the current ap-

proach; however they are mandatory to enable a real-

istic Q2-evolution of the form factors and the proton’s

form factor ratio µpG
p
E/Gp

M [11]. It is noteworthy that

such uncertainties will be removed upon extending

the quark-diquark approach to a three-body frame-

work: in a rainbow-ladder truncation, the analogue of

Eq. (3) only involves the dressed-quark photon vertex

and a dressed gluon propagator, i.e., quantities which

are known and need not be modeled.

6 Summary and outlook

In Landau gauge QCD, the Green functions of

quarks and gluons are sufficiently well determined

such that they can be used as a reliable input in rela-

tivistic bound state equations. These provide then

a unified approach to mesons and baryons within

a quantum-field-theoretical framework. Within the

rainbow-ladder truncation meson observables and the

nucleon mass have been calculated. These recent re-

sults mark a milestone in the effort to determine nu-

cleon observables in a ‘first-principle’ functional ap-

proach to continuum QCD.

Electromagnetic properties of the nucleon and

other baryons are currently investigated within this

truncation scheme. The extensions of recent studies

of meson properties beyond rainbow-ladder [12] to

the covariant Faddeev equations will improve on the
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now existing unified approach to meson and baryon

properties.
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