
Chinese Physics C Vol. 42, No. 4 (2018) 045102

Comparing potential-driven DBI-inspired non-minimal kinetic coupling
(Dinkic) inflation with observational data *

Jun Chen(�d)1,2,3;1) Wenjie Hou(û©#)1,2,3;2) Taotao Qiu(¤77)1,2;3) Defu Hou(û�L)1,3;4)

1 Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan 430079, China
2 Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

3 Institute of Astrophysics, Central China Normal University, Wuhan 430079, China

Abstract: In our previous work [1], a new kind of inflation model was proposed, which has the interesting prop-

erty that its perturbation equation of motion gets a correction of k4, due to the non-linearity of the kinetic term.

Nonetheless, the scale-invariance of the power spectrum remains valid, both in large-k and small-k limits. In this

paper, we investigate in detail the spectral index, the index running and the tensor/scalar ratio in this model, espe-

cially in the potential-driven case, and compare the results with the current PLANCK/BICEP observational data.

We also discuss the tensor spectrum in this case, which is expected to be tested by future observations of primordial

gravitational waves.
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1 Introduction

With the development of the theory of inflationary
cosmology, more and more interesting inflation models
are being produced, with various theoretical motivations
and/or observational advantages. Among them are the
Galileon/Horndeski models [2–4] which have been pro-
posed for the last few decades. In this theory, higher
derivative terms and/or non-minimal couplings are in-
cluded; however the interesting property is that there
are no (bad) redundant dynamical degrees of freedom,
which is due to the delicate design of the action.

In order to extend this theory to explore more inter-
esting properties, constructing Beyond Horndeski models
has also become popular [5–8]. In a previous study [1],
one of the current authors proposed a new kind of infla-
tion model which contains a non-minimal kinetic cou-
pling term, and moreover, by using a DBI-type form
of the action, the correction term is non-linearly in-
cluded in the action. We dub this model the “DBI-
inspired non-minimal kinetic coupling” (Dinkic) inflation
model. This model shares the nice ghost-free property
of Galileon/Horndeski models. However, there will be a
correction term which is proportional to k4 in the per-
turbed equation of motion, due to the non-linear form.

Nevertheless, the scale invariance of the power spectrum
can still be guaranteed, even in the large-k limit when
this term is dominant. Due to the coupling, however,
there is a deficit of the power spectrum in the large-k
limit which makes the whole spectrum red-tilted.

Since observational techniques are also developing,
with more and more precision and detectability, we ex-
pect to get more and more information from observa-
tional data. Apart from the most frequently used pa-
rameters, such as the amplitude of the primordial power
spectrum Pζ , the spectral index ns, and the tensor/scalar
ratio r, we have also been able to detect more de-
tails of the spectrum, such as the running of the index
(αs ≡ dns/dlnk) and even the running of the running
(βs≡d2ns/dlnk

2). For example, the PLANCK 2013 data
has put stringent constraints on αs: αs=−0.013±0.009
(68% C.L.) [9], while in the PLANCK 2015 data, the con-
straints are improved to be αs=−0.0033±0.0074 (68%,
C.L., βs=0), or αs=0.009±0.010, βs=0.025±0.013 (68%,
C.L., βs 6=0) [10].

Besides the scalar parts, it has become more and more
important to pay attention to the tensor modes of pri-
mordial perturbations, because they can generate pri-
mordial gravitational waves [11]. The recent discovery
of binary gravitational waves (GW) [12] won the Nobel
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Prize and was widely reported all over the world, but
the next goal of detecting gravitational waves with lower
frequencies is more challenging. There are many world-
class projects planned for low-frequency GW, such as
the eLISA satellite [13], the TianQin satellite [14], and
the AliCPT telescope [15]. The AliCPT telescope (first
stage), located in the Ali region of Tibet, China, at an
altitude of 5,250 meters, is expected to improve the con-
straint on the tensor/scalar ratio to about one order of
magnitude stronger within a few years. One may also
be able to extract more information about tensor per-
turbations, such as the tensor spectral index nT and so
on [15].

In this paper, we will perform a more detailed in-
vestigation of the Dinkic inflation model, paying special
attention to the case in which inflation is driven by the
potential of the model. There have been many famous
potential-driven inflation models such as chaotic inflation
[16], natural inflation [17], new inflation [18, 19], axion
monodromy inflation [20] and so on, some of which have
a fundamental origin or are closely related to particle
physics (for a comprehensive review see Ref. [21]). In
the following, by considering various inflation potentials,
we will calculate the power spectrum, spectral index and
its running, and compare with the observational data.
Moreover, we also consider information about tensor per-
turbations such as the tensor spectral index and ten-
sor/scalar ratio, and compare them to observational con-
straints not only from current data, but also possible con-
straints from future detectors of primordial gravitational
waves. Note that similar considerations for canonical in-
flation with non-minimal kinetic coupling were made in
Ref. [22].

Our paper is organized as follows. In Section 2 we
briefly review the Dinkic inflation model, and present
general analytical forms of scalar and tensor spectra,
spectral index and its running, as well as the ten-
sor/scalar ratio. In Section 3, for various parameter
choices of large field and small field models, we get solu-
tions of quantities for the scalar perturbations given in
Section 2, and their observational constraints. In Section
4 we discuss the tensor perturbations of these models.
Section 5 contains concluding remarks.

2 The Dinkic inflation model

To start with, we write down the action of the Dinkic
inflation model as [1]:

S=

∫
d4x
√−g

[
R

2κ2
− 1

f(φ)
(
√
D−1)−V (φ)

]
, (1)

where D≡1−2αf(φ)X+2βf(φ)X̃ , with X≡− 1
2
gµν∂µφ∂νφ

and X̃ ≡− 1
2M2G

µν∂µφ∂νφ. M is the scale of the non-
minimal kinetic coupling, while Mpl=κ−1 is the Planck

scale. Note that since the kinetic coupling term 2βf(φ)X̃
resides in the square root, the action becomes non-linear
and cannot be included in the Galileon or Horndeski
theories. Under the flat Friedmann-Robertson-Walker
(FRW) metric (gµν = diag{−1,a2(t),a2(t),a2(t)}) where

X = φ̇2/2, X̃ = −3(H/M)2φ̇2/2, by varying the action
with respect to the field φ, we can get the equation of
motion for φ:

0 =
fφ(
√
D−1)2

2f2
√
D

+
3βH2−α√
D

φ̈+
2βḢ+3βH2−α√

D
3Hφ̇

−3βH2−α
2D3/2

Ḋφ̇−Vφ, (2)

and the energy density ρ and pressure p are:

ρ =
(
√
D−1)
f(φ)

+V (φ)+
αφ̇2

√
D
+
6βH2φ̇2

M2
√
D
, (3)

p = − (
√
D−1)
f(φ)

−V (φ)−3βH2φ̇2

M2
√
D
−
(

βHφ̇2

M2
√
D

)
, (4)

which satisfy the Friedmann equations 3H2 =κ2ρ, Ḣ =
−κ2(ρ+p)/2. From the above equations one can see that,
in the absence of the 2βX̃ term and in the slow-roll limit
(αfφ̇2¿1,

√
D∼1), everything returns to the slow-roll

canonical inflation case. In the presence of the 2βX̃ term
and in the slow-roll limit (|αfφ̇2−3βf(H/M)2φ̇2| ¿ 1,√
D ∼ 1), everything will be the same as the slow-roll

canonical inflation with the kinetic term non-minimally
coupled to the Einstein tensor at the background level.
However, as will be shown below, due to the non-linearity
of the non-minimal coupling term, the perturbation
equation of motion will have a k4-correction term which
is different from its canonical correspondence. This will
also cause some difference in the observables in the small
scale (large k) region.

To analyse the perturbations generated by the model,
we make use of the Arnowitt-Deser-Misner (ADM) for-
malism [23]. The perturbed action up to the second order
becomes [1]:

δ2S≈ 1

2κ2

∫
d4xa3

[
6
xβ
D ζ̇2−2ε

a2
(∂ζ)2+

16x4
βy

a4H2
(∂2ζ)2

]
, (5)

where xβ ≡ κ2βφ̇2/(2M 2
√
D), y ≡ f(φ)M 2

pH
2/
√
D, and

ε≡−Ḣ/H2. Moreover, to get rid of the ghost problem,
xβ is required to be larger than zero.

From the action, one can easily get the perturbed
equation of motion:

u′′+c2sk
2

[
1+24

x5
β|y|
ε2D2

(
csk

aH

)2
]
u−z

′′

z
u=0, (6)

where u≡zζ, z≡a
√

3xβ/D, c2s =εD/3xβ, and the prime
denotes the derivative with respect to conformal time
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τ≡
∫
a−1(t)dt. The solution is:

u=

√
π|τ |
2

[
H(1)
ν (ωτ)+H(1)

−ν (ωτ)
]
, (7)

with H(1) being the type I Hankel function, and we ap-
proximately have

ν'3
∫
ωdτ/(2ωτ), ω2=

εD
3xβ

[
1+24

x5
β|y|
ε2D2

(
csk

aH

)2
]
.

(8)
In the large scale limit where k−1Àk−1

c by a critical
k-value kc≡aH

√
εD/(8x4

βy), we have ν' 3/4, while in
the small scale limit where k−1¿k−1

c , one has ν'3/2.
The initial condition of ζ is:

ζ' 1√
2ω(k,τ)

exp

(∫ τ

ω(k,τ ′)dτ ′
)
, with

∣∣∣
ω′

ω2

∣∣∣¿1,

(9)
where we imposed the adiabatic (or WKB) approxima-
tion in order to keep the analogy to the usual Bunch-
Davies vacuum. Note that in our case where the disper-
sion relationship becomes non-trivial, this approximation
may not work when the variation of ω becomes robust,
especially in the region between ν = 3/4 and ν = 3/2,
which may affect the sub-horizon perturbations. How-
ever, from Eq. (8) one can calculate that

∣∣∣
ω′

ω2

∣∣∣' kτ

csk2
cτ

2[1+(k/kc)2]3/2
. (10)

This will be less than unity as long as |kcτ | ∼√
εD/(8x4

βy) À 1, which can be easily satisfied. The
cases where the WKB approximation is violated deserve
further study1).

The super-horizon solution of Eq. (7) is

ζ' 1

3

∫ Ddt
a3(t)xβ

(large scale) or

H

√
D

6xβω3
(small scale), (11)

so that in large scale limit, the power spectrum, the spec-
tral index and the running of spectral index are:

P (l)
s ≡ k3

2π2
|ζ|2' H2

8π2

√
3xβ
ε3D , (12)

n(l)
s ≡ 1+

dlnP (l)
s

dlnk
'1−2ε−3

2
η+ι−3

4
s, (13)

α(l)
s ≡

dn(l)
s

dlnk
'−2ηε−3

2
hη+jι−3

4
ςs, (14)

respectively, where η≡ ε̇/(Hε), s≡Ḋ/(HD), ι≡φ̈/(Hφ̇),
h≡ η̇/(Hη), j ≡ ι̇/(Hι), ς ≡ ṡ/(Hs). In the small scale

limit where the k4-term is taken into account, the power
spectrum, the spectral index and the running of spectral
index become:

P (s)
s ' H2

8π2

√
3xβ
ε3D

[
1−C

(
csk

aH

)2
]
, (15)

n(s)
s ≡ 1+

dlnP (s)
s

dlnk
'1−2ε−3

2
η+ι−3

4
s

− C
1−C (5εx+εy−2η−2s), (16)

α(s)
s ≡ dn(s)

s

dlnk
'−2ηε−3

2
hη+jι−3

4
ςs

− C
(1−C)2 (5εx+εy−2η−2s)

2

− C
1−C

(
−10jι+8ηε−2hη+ιεf+εfε+

ε2f
4

)
, (17)

where εx ≡ ẋβ/(Hxβ), εy ≡ ẏ/(Hy), εf ≡ ḟ/Hf , and
C ≡ 36x5

β|y|/ε2D2. One can see that in both limits the
power spectrum can be nearly scale-invariant2), but in
the small scale limit, there is a correction to the ampli-
tude of the power spectrum, which is due to the k4 term
correction in the expression of ω2.

Moreover, one can also calculate the tensor pertur-
bations by considering the tensor mode of gravitational
fluctuations. The second-order action for tensor pertur-
bations can be written as [1]:

δ2ST=
1

8κ2

∫
d4xa3

[
FTγ̇

2
ij−GT

(∇γij)2
a2

]
, (18)

where FT≡1−xβ, GT≡1+xβ. The equation of motion for
tensor perturbation γij is

γ′′ij−c2T∇2γij+
(a2FT)

′

a2FT

γ′ij=0, (19)

where c2T≡GT/FT. The above equation has the solution:

γij=C1+C2

∫
dt

a3(t)FT

, (20)

where C1 and C2 are integration constants. The power
spectrum and the spectral index for tensor perturbations
is

PT ≡
k3

2π2
|γij |2=

2H2

GTcTπ2
, (21)

nT ≡
dlnPT

dlnk
=

xβ
xβ−1

(2ι−s)−2ε−sT, (22)

where sT≡ ċT/(HcT), and with Eqs. (12) and (15), one

1) We thank the referee for pointing this out to us.

2) Although Eq. (15) contains a k2-term which seems not to be scale-invariant, it will be compensated by the (aH)2 in the denomi-
nator. This means different k-modes will exit the horizon at different times, but at the crossing point (csk=aH) each mode has the same
amplitude, and becomes constant after crossing. Similar demonstrations can also be found in Refs. [1, 24, 25].
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gets the tensor/scalar ratio r as:

r(l) ≡ PT

P (l)
s

'16ε
√

εD
3xβ

, (23)

r(s) ≡ PT

P (s)
s

'16ε
√

εD
3xβ

[
1+C

(
csk

aH

)2
]
, (24)

for large and small scale limits, respectively.

3 Spectrum, index and its running

3.1 Slow-roll analysis in potential-driven case

In this section, we restrict ourselves to a specific case,
where the inflation is driven by the potential. In this
case the slow-roll approximation can be applied, and we
consider the following slow-roll conditions:

1

2
αφ̇2+

9βH2φ̇2

2M 2
¿V (φ), |φ̈|¿|3Hφ̇|, |2βḢ|

|αM 2+3βH2|¿1,

(25)
under which the equation of motion (2) and Friedmann
equation are reduced to:

3(α+
3βH2

M2
)Hφ̇+Vφ'0,

3H2

κ2
'V (φ), (26)

and the e-folding number N is defined as:

N≡
∫ te

t∗

Hdt=

∫ φe

φ∗

H

φ̇
dφ'−

∫ φe

φ∗

κ2V (αM 2+βκ2V )

M2Vφ
dφ.

(27)
It is useful to define the potential-based slow-roll pa-

rameters as:

εV =
M2

6κ2

(Vφ
V

)2 (αM 2+3βκ2V )

(αM 2+βκ2V )2
,

ηV =
M2Vφφ

(αM 2+βκ2V )κ2V
,

ξ2
V =

M4VφφφVφ
(αM 2+βκ2V )2κ4V 2

. (28)

In the high friction limit where 3βH2 ' βκ2V À
αM 2, one can reduce the above formulae to get: N '
−βκ4/M 2

∫ φe

φ∗
(V 2/Vφ)dφ, εV ' M 2V 2

φ /(2κ
4βV 3), ηV '

M2Vφφ/(βκ
4V 2), ξ2

V 'M 4VφφφVφ/(β
2κ8V 4), which is dif-

ferent from the canonical single scalar field models. By
using Eq. (26), the geometry-based slow-roll parameters
(ε, η, ι, s, h, j, ς) can be re-expressed as:

ε'εV , η'2ι'2(3εV−ηV ), s'4ι−2ε'10εV−4ηV ,

h'j' 18ε2V+ξ
2
V−10εV ηV

3εV−ηV
, ς' 30ε2V−18εV ηV+2ξ2

V

5εV−2ηV
.

(29)

Moreover, xβ can also be expressed as xβ'εV /3. There-
fore, in the large scale limit, according to Eqs. (13), (14)

and (23), one can express ns, αs and r as:

n(l)
s ' 1−31

2
εV+5ηV , (30)

α(l)
s ' −93ε2V+51εV ηV−5ξ2

V , (31)

r(l) ' 16εV . (32)

In the small scale limit, some more parameters need to
be taken into account. From the expressions of εx and
εy, we have:

εx'2ι−
1

2
s, εy'εf−2ε−

1

2
s. (33)

Therefore, using Eqs. (16), (17) and (24), ns, αs and r
turn out to be:

n(s)
s ' 1−31

2
εV+5ηV+

C
1−C (34εV−14ηV−εf ), (34)

α(s)
s ' −93ε2V+51εV ηV−5ξ2

V+
C

1−C

(
204ε2V

−124εV ηV+14ξ2
V+ηV εf−4εV εf−

ε2f
4

)

− C
(1−C)2 (34εV+14ηV−εf )2, (35)

r(s) ' 16εV (1+C). (36)

One can see that, in the slow-roll approximation,
these parameters of the potential-driven Dinkic inflation
model can be expressed with fewer slow-roll parameters
and moreover, are more analyzable. In the following, we
will perform the calculation of the spectral index and its
running, by taking as examples two typical cases of po-
tential, namely the “large field potential” and the “small
field potential”, to see if the potential-driven Dinkic in-
flation model can be consistent with the observational
data.

3.2 Inflation with large field potential

In the large field inflation models, the inflaton field
goes from a large value towards a small value. This kind
of model can usually give rise to an “attractor” behav-
ior of inflation without fine-tuning of the initial condi-
tions [16, 26], and also a large tensor/scalar ratio [16]. A
commonly-used potential of large-field models is

V (φ)=λM 4
pl(φ/Mpl)

n, n>0. (37)

Note that for various indices n, the potential (37) can
be reduced to various interesting examples. For n= 2,
Eq. (37) is reduced to the mass-squared potential (V =
m2φ2/2) where m=

√
2λ/Mp is the mass of the inflaton

field, while for n=4, Eq. (37) is reduced to chaotic in-
flation [16]. Moreover, n can even be a rational number,
for example, for n=2/3 Eq. (37) turns into the poten-
tial of axion monodromy inflation [20] where the inflaton
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field is considered to be reduced from a D4 brane action
wrapped on a compact manifold.

From Eq. (28) and with the form of potential (37),
one can get the potential-based slow-roll parameter as:

εV =
n2M2Mn

pl

2βλφn+2
, ηV =

n(n−1)M 2Mn
pl

βλφn+2
,

ξ2
V =

n2(n−1)(n−2)M 4M2n
pl

β2λ2φ2n+4
, (38)

which are consistent with Ref. [22]. This is because the
slow-roll parameters are constructed from background
quantities, and as is mentioned in Section 2, the current
model can be reduced to the model in Ref. [22] at back-
ground level. This is despite the perturbation quantities
such as ns, αs and r being quite different, due to their
difference in perturbation level, as will be shown below.

Moreover, from Eq. (27), one can get the e-folding
number of inflation from the horizon-crossing to the end:

N=

∫ φe

φ∗

(
−βλ

n

φn+1

M2Mn
pl

)
dφ=

λβ(φn+2
∗
−φn+2

e )

M2Mn
pln(n+2)

, (39)

where φe and φ∗ are the values of the field when inflation
ends and when the perturbation of inflation observed to-
day begins to cross the horizon, respectively.

For 0<n<2, εV will reach unity earlier than ηV (also
shown in Ref. [22]), so we set the time when εV =1 to be
the ending time of inflation. Thus the final value of φ at
the ending of inflation is obtained as:

φe=

[
n2M2Mn

pl

2βλ

]1/(n+2)

, (40)

and Eqs. (40) and (39) give the solution:

φ∗=

[
Mn

plM
2n(n+2)

βλ

(
N+

n

2(n+2)

)]1/(n+2)

. (41)

Therefore, the slow-roll parameters at the crossing
point turn out to be:

εV ∗ =
n

2N(n+2)+n
, (42)

ηV ∗ =
2(n−1)

2N(n+2)+n
, (43)

ξ2
V ∗

=
4(n−1)(n−2)
[2N(n+2)+n]2

, (44)

where here and after, we use the subscript ‘∗’ to de-
note the value at the crossing time. Moreover, one has
εf∗ =8/[2N(n+2)+n]. From Eqs. (30)–(32) and (34)–
(36), one gets the spectral index ns, its running αs, and

the tensor/scalar ratio r as:

n(l)
s∗ = 1− 11n+20

2[2N(n+2)+n]
, (45)

α(l)
s∗ = − (11n+20)(n+2)

[2N(n+2)+n]2
, (46)

r(l)
∗

=
16n

2N(n+2)+n
(47)

for the large scale limit, and

n(s)
s∗ = 1− 11n+20

2[2N(n+2)+n]
+
C

1−C
6n+20

2N(n+2)+n
, (48)

α(s)
s∗ = − (11n+20)(n+2)

[2N(n+2)+n]2
+
C

1−C
4(3n+10)(n+2)

[2N(n+2)+n]2

− C
(1−C)2

4(3n+10)2

[2N(n+2)+n]2
, (49)

r(s)
∗

=
16n(1+C)

2N(n+2)+n
(50)

for the small scale limit.
For n ≥ 2, the inflation ends when ηV = 1, which

reaches unity earlier than εV . Therefore the value of φ
at the ending of inflation can be determined as:

φe=

[
n(n−1)Mn

plM
2

λβ

]1/(n+2)

. (51)

Equations (51) and (39) give the solution:

φ∗=

[
Mn

plM
2n(n+2)

βλ

(
N+

n−1
n+2

)]1/(n+2)

, (52)

then the slow-roll parameters at the crossing point turn
out to be:

εV ∗ =
n

2[N(n+2)+(n−1)] , (53)

ηV ∗ =
(n−1)

N(n+2)+(n−1) , (54)

ξ2
V ∗

=
(n−1)(n−2)

[N(n+2)+(n−1)]2 , (55)

and εf∗ = 4/[N(n+2)+(n−1)]. From Eqs. (30)-(32),
one gets the spectral index ns, its running αs, and the
tensor/scalar ratio r as:

n(l)
s∗ = 1− 11n+20

4[N(n+2)+(n−1)] , (56)

α(l)
s∗ = − (11n+20)(n+2)

4[N(n+2)+(n−1)]2 , (57)

r(l)
∗

=
8n

N(n+2)+(n−1) , (58)

in the large scale limit. For various choices of n=2/3,2,4
and N∗=50,60, we list the specific values of ns, αs and
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r in Table 1. Moreover, from Eqs. (34)–(36), we get:

n(s)
s∗ = 1− 11n+20

4[N(n+2)+(n−1)]+
C

1−C
3n+10

N(n+2)+(n−1) ,

(59)

αs∗ = − (11n+20)(n+2)

4[N(n+2)+(n−1)]2+
C

1−C
(3n+10)(n+2)

[N(n+2)+(n−1)]2

− C
(1−C)2

(3n+10)2

[N(n+2)+(n−1)]2 (60)

r(s)
∗

=
8n(1+C)

N(n+2)+(n−1) (61)

in the small scale limit. One can see that in both limits,
ns, αs and r are all functions of the power-law index of
the potential n and the e-folding number N∗ only.

In Fig. 1, we plot the constraint contour of ns−r as
well as αs−ns for each case, and compare them with the
PLANCK TT+lowP+BICEP data [27]. From the ns−r
plot we can see that most of these cases fall in the (at
least 2σ) confidence level of the observational data. Es-
pecially, because of the non-minimal coupling effect, the

tensor/scalar ratio of power-law inflation model can be
quite suppressed. The model with smaller n gives lower
r and thus has a better fit to the data, which is similar
to the GR case. Therefore, for n=2/3 with N=60, the
model in the large scale limit can fit the data at 1σ con-
fidence level, while n>4 may fall outside the 2σ region.
Moreover, considering small scale can help improve the
data fitting. In the αs−ns plot we see that neither ns

nor αs are very sensitive to the parameters, so the data
points overlap with each other. For N > 50, the data
points can fall into the 1σ confidence level.

A side comment on the constraint from the Lyth
bound is given here. As D. Lyth suggested in 1996 [28],
a detectable r will also give rise to a super-Planckian ex-
cursion of φ, therefore the effective field theory descrip-
tion of inflation may not be trustable. However, since
Ref. [28] only considered canonical large field models and
assumed a monotonic slow-roll parameter, many articles
[29–36] argue that for more general inflation models, this
bound could be modified. In our model, using Eqs. (40),
(41), (51) and (52), one can also calculate the excursion
of φ during inflation:

∆φ≡|φ∗−φe| =
(
M2Mn

pl

2λβ

) 1
n+2 (

[2N(n+2)n+n2]
1

n+2−n 2
n+2

)
for small k, (62)

or

(
M2Mn

pl

λβ

) 1
n+2 (

[N(n+2)n+(n−1)n] 1
n+2−[n(n−1)] 1

n+2

)
for large k. (63)

Table 1. The large scale limit ns, αs and r for large field inflation models with various potential index n and e-folding
number N .

N=50 N=60

n=2/3 n=2 n=4 n=2/3 n=2 n=4

ns 0.9489 0.9477 0.9472 0.9574 0.9564 0.9559

αs -0.0010198 -0.0010395 -0.0010456 -0.0007088 -0.0007231 -0.0007285

r 0.0399 0.0796 0.1056 0.0333 0.0663 0.0881

n
s

0.94 0.95 0.96 0.97 0.98 0.99 1

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 Planck TT+lowP+BICEP
n=2/3, large scale
n=2/3,N=50, large scale
n=2/3,N=60, large scale
n=2/3,N=50, small scale
n=2/3,N=60, small scale
n=2, large scale
n=2,N=50, large scale
n=2,N=60, large scale
n=2,N=50, small scale
n=2,N=60, small scale
n=4, large scale
n=4,N=50, large scale
n=4,N=60, large scale
n=4,N=50, small scale
n=4,N=60, small scale

n
s

0.94 0.95 0.96 0.97 0.98 0.99 1

α
s

-0.04

-0.03

-0.02

-0.01

0

0.01
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Planck TT+lowP+BICEP
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n=2/3,N=50, large scale
n=2/3,N=60, large scale
n=2/3,N=50, small scale
n=2/3,N=60, small scale
n=2, large scale
n=2,N=50, large scale
n=2,N=60, large scale
n=2,N=50, small scale
n=2,N=60, small scale
n=4, large scale
n=4,N=50, large scale
n=4,N=60, large scale
n=4,N=50, small scale
n=4,N=60, small scale

Fig. 1. (color online) Plot of ns−r (left panel) and ns−αs (right panel) of large field inflation models, with comparison
to PLANCK TT+lowP+BICEP data.
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From the above one can see that the field variation
∆φ does not depend only on model parameters such as n,
λ, β, M and the e-folding number N∗, some of which are
not constrained by the observational data. Therefore, it
is easy for ∆φ<Mpl to be satisfied with a proper choice
of these parameters. For example, if we set the kinetic
nonminimal coupling scale M∼10−6Mpl, for N=50 in-
flation with n= 4, we can get ∆φ' 0.8Mpl < 1Mpl for
λ=10−10 and β=1. A more general analysis can be seen
for the canonical NKC inflation case in Ref. [22].

3.3 Inflation with small field potential

In the small field inflation models, the inflaton field
goes in the opposite direction, namely from a small value
towards a large value. Different from large field models,
for small field models the initial conditions usually have
to be fine-tuned, and the tensor/scalar ratio is small [26].
One possible small-field potential can be written as:

V (φ)=Λ

[
1−
(
φ

v

)2]n
. (64)

For |φ/v|¿1, the potential will reduce to a cosmological
constant, V (φ)' Λ. For different choices of n, several
known models can also be recovered. For n=1, Eq. (64)
is an example of the so-called “hill-top” potential [18]
and can be used as the potential of the IR model of
DBI inflation [37]. For n = 2, Eq. (64) is nothing but
the symmetry-breaking potential [19], which is applied
in the Higgs-inflation scenario [38].

Considering the small-field potential Eq. (64) and
with Eq. (28), one can get the potential-based slow-roll
parameters as:

εV =
2M 2M4

pl

Λβv2

n2(φ/v)2

[1−(φ/v)2]n+2
, (65)

ηV = −
2M 2M4

pl

Λβv2

n[1−(2n−1)(φ/v)2]
[1−(φ/v)2]n+2

, (66)

ξ2
V = −

24M 2M6
pl

Λ2β2v4

n2(n−1)(φ/v)2
[1−(φ/v)2]2n+3

+
16M 4M8

pl

Λ2β2v4

n2(n−1)(n−2)(φ/v)4
[1−(φ/v)2]2n+4

. (67)

Moreover, the e-folding number of inflation evolves from
the horizon-crossing to the end, and Eq. (27) will be-
come:

N =

∫ φe

φ∗

Λβv2

2M 2M4
pl

[1−(φ/v)2]n+1

nφ
dφ

= − Λβv2

4M 2M4
pln

(
1−[1−(φ/v)2]1+n

1+n

+(−1)nB
[
v2

φ2
,−n,1+n

])∣∣∣∣∣

φe

φ∗

, (68)

where B[v2/φ2,−n,1+n] is the incomplete beta function.
For the n=1 case, for a common choice of parameters

such that Λ=10−8M4
pl, β=1, v=10Mpl andM=10−6Mpl,

one can find that εV reaches unity earlier than |ηV |, so
the final value of φ has to be chosen at the time when
εV =1. However, according to Eq. (65), εV (φ)= 1 is a
high order algebraic equation for which it is difficult to
obtain analytic solutions. We therefore turn to a numer-
ical approach with specific values of parameters. In the
above parameter choice, we find that

φe'0.993707v=9.93707Mpl. (69)

Equation (68) can be simplified as:

N=
Λβv2

8M 2M4
pl

[
φ2

v2

(
φ2

v2
−4
)
+4ln

(
φ

v

)]∣∣∣∣∣

φe

φ∗

, (70)

therefore,

φ∗ ' 0.957786v=9.57786Mpl (N=50),

φ∗ ' 0.955191v=9.55191Mpl (N=60) (71)

and one can immediately get ∆φ'0.35921Mpl (N=50)
and ∆φ'0.38516Mpl (N=60), neither of which violate
the Lyth bound. This is due to the fact that N is en-
hanced by a factor of M−2, so in order to get proper N ,
less excursion of φ is required. By using Eqs. (65–67) as
well as the definition of εf , one gets

εV ∗ ' 0.003250, ηV ∗'−0.000293,
ξ2
V ∗
' 0, εf∗'−0.001171, (N=50) (72)

εV ∗ ' 0.002714, ηV ∗'−0.000261,
ξ2
V ∗
' 0, εf∗'−0.001042, (N=60) (73)

and from Eqs. (30), (31) and (32), we get

n(l)
s∗'0.948160, α(l)

s∗'−0.001031,r(l)
∗
'0.052000, (N=50)

(74)

n(l)
s∗'0.956633, α(l)

s∗'−0.000721,r(l)
∗
'0.043424, (N=60)

(75)
in the large scale limit. For the small scale limit, from
Eqs. (34), (35) and (36), we get

n(s)
s∗ ' 0.948160+0.139109

C
1−C , (76)

α(s)
s∗ ' −0.001031+0.002288

C
1−C−0.013403

C
(1−C)2 ,

(77)

r(s)
∗
' 0.052000(1+C) (78)

for N=50, which gives the relationship r(s)=0.104000−
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0.007234/(n(s)
s −0.809051), and

n(s)
s∗ ' 0.956633+0.096972

C
1−C , (79)

α(s)
s∗ ' −0.000721+0.001602

C
1−C−0.009404

C
(1−C)2 ,

(80)

r(s)
∗
' 0.043424(1+C) (81)

for N = 60, with the relationship r(s) = 0.086848−
0.004211/(n(s)

s −0.859661), respectively.
One can perform similar calculations for n=2. Equa-

tion (68) can be written as:

N=
Λβv2

4M 2M4
pl

[
−3

2

(
φ

v

)2

+
3

4

(
φ

v

)4

−1

6

(
φ

v

)6

+ln

(
φ

v

)]∣∣∣∣∣

φe

φ∗

.

(82)
For parameter choices of Λ, v and M as: Λ=10−8M4

pl,
β=1, v=1Mpl, M =10−6Mpl, we find that εV =1 can
still be used as final condition of inflation, so one gets

φe'0.915991v'0.915991Mpl, (83)

and

φ∗ ' 0.674107v'0.674107Mpl (N=50),

φ∗ ' 0.658604v'0.658604Mpl (N=60) (84)

and ∆φ'0.241884Mpl (N=50) while ∆φ'0.257387Mpl

(N=60). The slow-roll parameters are

εV ∗'0.002239, ηV ∗'0.001640,
ξ2
V ∗
'−0.000030, εf∗'−0.004926, (N=50) (85)

εV ∗'0.001925, ηV ∗'−0.001172,
ξ2
V ∗
'−0.000119, εf∗'−0.004407, (N=60) (86)

Therefore from Eqs. (30), (31) and (32), we get

n(l)
s∗'0.957096,α(l)

s∗'−0.000503,r(l)
∗
'0.035824,(N=50)

(87)

n(l)
s∗'0.964302,α(l)

s∗'0.000135,r(l)
∗
'0.030800,(N=60)

(88)

in the large scale limit, and for the small scale limit, from
Eqs. (34), (35) and (36), we get

n(s)
s∗ ' 0.957096+0.104012

C
1−C , (89)

α(s)
s∗ ' −0.000503+0.001104

C
1−C−0.010818

C
(1−C)2 ,

(90)

r(s)
∗
' 0.035824(1+C). (91)

for N = 50, with the relationship r(s)
∗
' 0.071648−

0.003726/(n(s)
s∗ −0.853084), and

n(s)
s∗ ' 0.964302+0.086265

C
1−C , (92)

α(s)
s∗ ' 0.000135−0.004652 C

1−C−0.007442
C

(1−C)2 ,

(93)

r(s)
∗
' 0.030800(1+C). (94)

for N = 60, with the relationship r(s)
∗
' 0.061600−

0.002657/(n(s)
s∗ −0.878037).

In Fig. 2, we plot the constraint contour of ns−r and
αs−ns for each case, compared to the same data used
for large field cases. The results are quite similar. For
small field inflation, it is easier to get smaller r to fit
the observational data, and for the n=2 case, all data
points with N ∈ [50,60] fall in the 1σ confidence level in
the large scale limit. The data of αs is still not sensitive
to the model parameters, and can fit with the data at 1σ
confidence level.

n
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0.05

0.1

0.15
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n=1,N=60, small scale
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Fig. 2. (color online) Plot of ns−r (left panel) and ns−αs (right panel) of small field inflation models, with comparison
to PLANCK TT+lowP+BICEP data.
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Fig. 3. (color online) nT−r plots for large field (left panel) and small field (right panel) respectively.

4 Constraints on tensor spectrum: nT

vs. r

In this section, we analyse the relationship between
spectral index for tensor perturbation nT and the ten-
sor/scalar ratio r in our model. The future detection
capability of the AliCPT telescope in the (nT,r) param-
eter space has been given in Ref. [15]. In our model, one
has

sT'
2

3
εV (3εV−ηV ), (95)

in the potential-driven case, which is of the second order
of εV , ηV , etc. Therefore, together with Eq. (29), nT can
be expressed as

nT'−2εV+O(ε2V ). (96)

At leading order, nT ' −2εV . So in the large scale
limit, the consistency relation of r =−8nT can be sat-
isfied, while in the small scale limit, it is corrected as
r=−8nT(1+C). However, if we go further to the second
or higher orders, nT will receive a correction from the
NKC effect, and we will get a deviation from the con-
sistency relation. Therefore, if future observations are
sensitive enough to detect second order in nT, one may
also tell difference between our model and minimal cou-
pling inflation models.

In Fig. 3, we plot the relationship of (nT,r) in the
large scale limit for both large and small field models,
and the constraints from current Planck+BICEP data
and future AliCPT predictions. The consistency rela-
tion are satisfied in both cases for the large scale limit.
For large fields of n=2 and n=2/3 and for small fields
of n=1 and n=2, the values of r can fall into the de-

tectable region of the next AliCPT predictions, so one
can expect to test these cases in the near future. For the
small scale case, the data points will be raised due to a
factor of (1+C), with nT unchanged.

5 Concluding remarks

In this paper, we have studied the spectral index
and its running in the Dinkic inflation model, mainly
focusing on the potential-driven case. In our analysis,
we have taken as examples both the large field poten-
tial V (φ) = λM 4

pl(φ/Mpl)
n and the small field potential

V (φ) = Λ[1−(φ/v)2]n, with various choices of n. We
have calculated the power spectrum, spectral index, the
running of the index, and the tensor spectral index and
tensor/scalar ratio. We have also compared our results
with the observational constraints.

From the numerical plots, we can see that in the large
region parameter choice, the quantities of our model can
be acceptable within current observational data. Espe-
cially, the tensor/scalar ratio can be suppressed to meet
with the data due to the non-minimal coupling term.
The constraint on r favors smaller n for large field infla-
tion and larger n for small field inflation, while αs is not
sensitive to the model parameters in either case. More-
over, in the small scale region, there is an uncertainty due
to the freedom of the parameter C, so one can give a line
rather than a point of (ns,r) and (αs,ns), along which
one can get some values of parameters which are favored
within 1σ level for the current observational data. We
also showed that at leading order, the tensor spectral
index is still related to the tensor/scalar ratio with the
well-known consistency relation r=−8nT, and we have
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compared our results with the current and future de-
tecting abilities of the AliCPT telescope for primordial
gravitational waves.

As a final remark, we comment that due to the non-
minimal kinetic term and its non-linear effect, there
should be some more differences from the GR case, or
even the non-minimal kinetic coupling inflation studied
in [22], For example, at sub-leading order, the consis-
tency relationship of (nT,r) can be modified. However,

these differences are still very small (several orders of
slow-roll parameters), and undetectable within the cur-
rent observational data. We hope that future observa-
tions with higher precision and detectability can give us
better distinction between different models, and a better
test of our model.

We thank Ze Luan and Shulei Ni for help with plot

drawing.
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