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Abstract: The decay widths of Υ(nS)→ d̄∗(2380)+X with n=1,2,3 are studied in a phenomenological way. With the

help of crossing symmetry, the decay widths are obtained by investigating the imaginary part of the forward scattering

amplitudes between d∗ and Υ(nS). The wave functions of d∗ and deuteron obtained in previous studies are used for

calculating the amplitude. The interaction between d∗ (d) and Υ is governed by the quark-meson interaction, where

the coupling constant is determined by fitting the observed widths of Υ(nS) → d̄+X. The numerical results show

that the decay widths of Υ(nS)→ d̄∗+X are about 2−10 times smaller than that of d̄+X. The calculated momentum

of d̄∗ is in the range 0.3−0.8 GeV. Therefore, it is very likely that one can find d̄∗(2380) in these semi-inclusive decay

processes.

Keywords: Upsilon decay, SU(3) chiral quark model, d̄∗(2380) production

PACS: 13.20.Gd, 21.10.Tg, 21.60.-n DOI: 10.1088/1674-1137/42/6/064102

1 Introduction

In recent years, a resonance-like structure named
d∗(2380) was observed by the WASA-at-COSY collab-
orations in pn→dπ0

π
0, pn→dπ+

π
−, when they studied

the ABC effect [1, 2]. Later, this particle was confirmed
in series of reactions, such as pn→pnπ0

π
0, pn→ppπ−π0,

pd→3Heπ0π0, pd→3Heπ+π−, etc [3–8]. The analysis of
experimental data shows that d∗ has a mass of 2380 MeV,
a decay width of about 70 MeV, and its spin, isospin,
and parity are I(JP )=0(3+) [9]. Since its mass is about
70 MeV higher than the ∆Nπ threshold and about 80
MeV lower than the ∆∆ threshold, the threshold effect
is small for this particle. Because of its non-conventional
features of a narrow width plus a large binding energy
with respect to the ∆∆ threshold, the structure of d∗

has attracted attention.
In fact, theoretical investigations for such a state

started more than 50 years ago. After the publication
of the newly observed data, many theoretical calcula-
tions with various structural models have been carried
out. Among them, two major structural models that
can basically explain all the measured data have been
investigated intensively. One of the models considers an

exotic compact hexaquark-dominated structure [10–16],
and the other uses a quasi-molecular resonance of ∆Nπ
(or D12π) [17, 18]. However, apart from searching for
new physical quantities to distinguish different structural
assumptions, proposing a new accessible physical process
other than nuclear reactions or scattering processes to
confirm the existence of the d∗ state is extremely impor-
tant.

It is well-known that in the strong decay of heavy
quarkonium, the heavy quark annihilates with its anti-
particle and new quark-antiquark pairs are created. For
Υ, it can decay into a wide variety of combinations of
hadrons [19]. Among these hadronic decay modes, an
interesting mode is the semi-inclusive anti-deuteron (d̄)
production processes Υ(nS)→ d̄+X. This is because
d̄(d̄∗) and d(d∗) are bottomless baryons. The observa-
tion of d̄(d̄∗) in the Υ(nS) decays implies the existence
of d(d∗) in the same process. Since the mass of Υ(nS)
is larger than the mass of the d∗d̄∗ pair, the phase space
is large enough for Υ(nS) to decay into d̄∗ (or d∗) plus
other hadrons. Therefore, it is natural to think that
d̄∗(2380) is quite possible to be produced in the semi-
inclusive decays of Υ(nS). In this paper, we will start
from the Υ(nS)→ d̄+X decays. By fitting the decay
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widths of these processes, we can fix the unknown pa-
rameters required in the Υ→d̄∗+X calculation and then
estimate the decay widths (and/or numbers of events) of
the latter decay process.

The paper is organized as follows. In Section 2, the
formulism for the decay widths of the Υ(nS)→d̄(d̄∗)+X
processes is briefly introduced. Numerical results and
discussions are presented in Section 3. Finally, a short
summary is given in Section 4.

2 Brief formulism

In this section, we will study the decay widths for
Υ(nS)→ d̄∗(2380)+X. With the crossing symmetry, we
investigate the scattering between d∗(2380) and Υ(nS).
By virtue of the optical theorem, the decay widths can
be obtained by calculating the imaginary part of the
forward scattering amplitudes of d∗(2380)+Υ(nS) →
d∗(2380)+Υ(nS). In these specific elastic scattering pro-
cesses, because the quarks in d∗ and Υ belong to a com-
pletely different type, the exchange of quarks from dif-
ferent hadrons cannot occur, while the exchange of gluon
between the quarks from different hadrons also does not
contribute. The only possible interaction between d∗ and
Υ is the s-channel meson exchange. Therefore, in the
study of the d∗(d)-Υ(nS) scattering, we adopt a con-
stituent quark model with a meson exchange potential,
where we assume that the B-meson exchange dominates,
to calculate the elementary process b̄+u(d)→ b̄+u(d).
The relevant Feynman diagram is shown in Fig. 1.

B+b

u

d

d

b

� �

p

n n

p

d d

Fig. 1. The Feynman diagram of Υ+d→Υ+d for-
ward scattering.

In this figure, the interaction between Υ and d(d∗)
is governed by the quark-meson interaction. The corre-
sponding Lagrangian can be written as

L= igb̄qBψ̄b̄γ5ψqB, (1)

where gb̄qB is the coupling constant, and ψq, ψb̄, and B
denote the fields of the light quark q, anti-bottom quark
b̄ and B meson, respectively. To restrict the value of the

coupling constant gb̄qB, we first study the forward scat-
tering of d+Υ→d+Υ (Fig. 1). The scattering amplitude
can be written as

M=g2b̄qBΨ
∗

ΥΨ
∗

d ū(pu)γ5v(pb̄)
1

q2−m2
B+imΓ

×v̄(pb̄)γ5u(pu)ΨdΨΥ,

where ΨΥ and Ψd are the wave functions of the Υ(nS) and
deuteron, respectively. u(pu), ū(pu), v̄(pb̄) and v(pb̄) rep-
resent the spinors of the u(d)-quark and b̄-quark in the
initial and final states, respectively. The wave functions
of Υ(nS) can be obtained by solving the Schrödinger
equation with a Cornell potential [20–23]. The obtained
masses for the 1S, 2S and 3S states are 9.46 GeV, 10.02
GeV and 10.34 GeV, respectively, which are quite close
to the experimental data.

In the quark cluster model, the wave function of the
deuteron in the quark degrees of freedom can simply be
expressed as

Ψd=A [ φN(~ρ1,~λ1) φN(~ρ2,~λ2) η
l=0
NN (~R) ζd ](SI)=(10) (2)

where A is the total anti-symmetrization operator, φN is
the internal wave function of nucleon, ηl=0

NN represents
the relative wave function in S-wave, which is deter-
mined by the dynamical calculation of the system with
the (extended) chiral SU(3) constituent quark model,
and ζd stands for the spin-isospin wave function in the
hadronic degrees of freedom (more details can be found
in Ref. [24]). As commonly used, the internal wave func-
tion of the nucleon can be taken as

φN=
1√
2
[ χρ ψρ+χλ ψλ] ΦN( ~ρ, ~λ), (3)

with χρ (χλ) and ψρ (ψλ) being the symmetric (anti-
symmetric) wave functions in the spin and isospin spaces,

Φ(~ρ,~λ) the spatial wave function and ρ and λ the Jacobi
coordinates. In the same way, the wave function of d∗

can be abbreviated to the form

Ψd∗ = A [ φ∆(~ρ1,~λ1)φ∆(~ρ2,~λ2) η
l=0
∆∆(~R)ζ∆∆

+φC8
(~ρ1,~λ1)φC8

(~ρ2,~λ2) η
l=0
C8C8

(~R) ζC8C8
](SI)=(30),

(4)

where A is the total anti-symmetrization operator, φ∆
and φC8

denote the inner cluster wave functions of ∆
and C8 (color-octet particle) in the coordinate space, ηl=0

∆∆

and ηl=0
C8C8

represent the S-wave relative wave functions
between ∆∆ and C8C8 clusters (the D-wave components
are negligibly small), and ζ∆∆, ζC8C8

stand for the spin-
isospin wave functions in the hadronic degrees of freedom
in the corresponding channels, respectively. The channel
wave function can be defined as

χeff,l=0
∆∆(C8C8)

(~R)=
〈

φ∆(C8)(~ρ1,
~λ1) φ∆(C8)(~ρ2,

~λ2)|Ψd∗
〉

. (5)
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Therefore, for simplicity, the wave function of d∗ can be
rewritten as

Ψd∗∼=[ φ∆(~ρ1,~λ1) φ∆(~ρ2,~λ2) χ
eff,l=0
∆∆ (~R) ζ∆∆

+ φC8
(~ρ1,~λ1) φC8

(~ρ2,~λ2) χ
eff,l=0
C8C8

(~R) ζC8C8
](SI)=(30).

We should emphasize that our treatment for the wave
function of d∗ is just an approximation for reducing te-
dious and almost inoperable calculations and making the
two components orthogonal. The obtained effective rel-
ative wave function can reasonably contain most of the
effect of anti-symmetrization of the wave function of d∗

shown in Eq. (4). The effective wave function is ob-
tained by projecting onto the physical base, and further
described by the sum of four Gaussian functions.

χeff,l=0
∆∆(C8C8)

(~R)=

4
∑

i=1

ci exp

(

−
~R2

2b2i

)

. (6)

It should be noticed that the quantum numbers for the
color-octet C8-cluster and the color-singlet ∆-cluster in
d∗ are different. For the C8-cluster, S=3/2,I=1/2,C=
(11), while for the ∆-cluster, S = 3/2,I = 3/2,C =
(00), where S, I and C denote the spin, isospin and
color, respectively. It should be specially mentioned
that these two channel wave functions are orthogonal to
each other and contain all the effects of the totally anti-
symmetrization implicitly. The details can be found in
Refs. [12–14, 16, 24].

On the other hand, the data published by the
PDG [19] show that the width of the B meson is very
small. Therefore, the propagator can be written as

1

q2−m2
B+imΓ

' 1

q2−m2
B+iε

→ −2πiδ(q2−m2
B). (7)

Then, the imaginary part of the amplitude is expressed
as

ImM = −
∫

dΠ 2πg2b̄qBΨ
∗

ΥΨ
∗

d ū(pu)γ5v(pb̄)

×v̄(pb̄)γ5u(pu)ΨdΨΥδ(q2−m2
B), (8)

where dΠ is an integral measure, including d~pρ, d~pλ, d~pη
and d~pR for the internal momenta in the nucleon, internal
momentum of Υ and relative momentum between nucle-
ons, respectively. The momenta ~pb̄, ~pu and ~q=~pb̄+~pu are
related to these momenta and the momentum ~pd of the
deuteron through the Jacobian transformation shown in
Appendix A. The forward scattering condition requires
that the momenta and quantum numbers of quarks in
the initial and finial states do not change.

With the optical theorem, the semi-inclusive decay
width of Υ→d̄+X can be calculated by

dΓ=
1

mΥ

(

d~pd
(2π)3

1

2Ed

)

×ImM(Υ+d→Υ+d). (9)

Integrating over the possible range of pd, the decay
widths of Υ(nS) to d̄+X can be obtained. In the final
step, the upper limit of the pd integration is determined
by the four-momentum conservation

√

~p 2
d +m2

d+
√

~p2d+M
2
X=mΥ. (10)

with MX being the residual mass of all final particles
in this semi-inclusive decay except the deuteron. For the
semi-inclusive decays of Υ(nS) to d̄∗(2380)+X, the calcu-
lation can be carried out in the same way, but replacing
the wave function and the mass of the deuteron with
those of the d∗(2380).

3 Numerical results and discussion

In this section, we will present the numerical results
for the widths of the semi-inclusive decays Υ(nS) →
d̄(d̄∗)+X. Before calculating the widths, we present the
channel wave functions of deuteron and d∗(2380) (both
∆∆ and C8C8 components) in Fig. 2.

In this figure, we only plot the wave functions in the
S partial wave and ignore those in the D partial wave,
because the latter is negligibly small. From these curves,
one clearly sees that the size of d is larger than that of
d∗, and the size of the C8C8 component is even smaller.
The peaks of the wave functions for the deuteron, the ∆∆
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Fig. 2. Channel wave functions in the S partial wave by using the extended chiral SU(3) quark model. The solid
curve in the left-hand diagram shows the wave function of the deuteron, and the dashed and solid curves in the
right-hand diagram show the wave functions of the ∆∆ and C8C8 components of d∗(2380), respectively.
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Fig. 3. The momentum distributions of d̄ (d̄∗) for the process Υ(nS)→d̄(d̄∗)+X. The figures, from left to right, are
for decays of Υ(1S), Υ(2S) and Υ(3S), respectively. The dots are data observed in experiments. The solid lines
are fits for d̄ and the dashed lines are predictions for d̄∗.

and C8C8 components of d∗ are located around 1.5 fm,
0.8 fm and 0.5 fm, respectively.

With these wave functions and Eqs. (7)-(9), we are
able to calculate the decay widths of Υ(nS) to d̄(d̄∗)+X.
We firstly calculate the widths of Υ(nS) decaying to d̄+X
and compare them with the data to restrict the value of
the coupling constant gb̄qB. As mentioned above, due
to energy conservation, the maximal momentum of the
deuteron should satisfy Eq. (10), namely it is residual
mass dependent. However, in the semi-inclusive decay,
the only affirmed information for X is its baryon num-
ber being 2, and the mass of X may have a value within
a broad range of about 2−7 GeV. Therefore, the max-
imal value of pd, and consequently the resultant decay
widths, will vary according to the residual mass of MX,
or somehow relate to the momentum transfer q (more
momentum related content will be discussed later). To
get a meaningful result, we treat this issue by inserting
a phenomenological form factor of the pd distribution:

F (pd)=N exp

[

− (pd−p0)2
Λ2

]

, (11)

where N denotes the normalization factor, p0 is the most
probable distribution point of pd, and Λ describes the de-
gree of the pd extension. Therefore, in our calculation,
there are three parameters, p0, Λ, and the coupling con-
stant gb̄qB. p0 and Λ are determined by the experimental
momentum distribution of the d̄ from the semi-inclusive
processes Υ(nS)→ d̄+X. gb̄qB is determined by the ex-
perimental decay width data.

Inserting the above form factor into the original
Eq. (9), we can get the final momentum distribution of
d̄. In Fig. 3, the momentum distribution of d̄ is shown
by solid lines. The figures, from left to right, are for the
decay of Υ(1S), Υ(2S) and Υ(3S), respectively. For ex-
ample, for Υ(1S), p0 and Λ are determined to be 0.24
GeV and 0.8 GeV, which provide the best fit to the ex-
perimental momentum distribution [25]. With the ob-
tained p0 and Λ, gb̄qB is determined to be 2.5×10−3 to

get the decay width of Υ(1S)→d̄+X 154×10−5 KeV. For
Υ(2S) and Υ(3S), from the experimental distributions
[26], p0/Λ are obtained as 0.25 GeV/0.78 GeV and 0.27
GeV/0.87 GeV, respectively.

It should be mentioned that in our model calculation,
gb̄qB is considered phenomenologically as an effective cou-
pling constant, instead of a momentum dependent one.
In other words, we neither use a running coupling con-
stant nor add a form factor to the vertex of the quark-
meson interaction. Since the mass of Υ(nS) increases
with increasing main quantum number n, the momentum
dependence of their semi-inclusive decay widths will also
vary, namely the phenomenological coupling constants
for different Υ(nS) states should have certain deviations.
To compensate for this difference, we determine the gb̄qB
for different Υ(nS) states by fitting their own observed
decay widths. As a result, the obtained effective coupling
constants gb̄qB(nS) for Υ(2S) and Υ(3S) are 1.9×10−3

and 1.3×10−3, respectively. This is consistent with the
result from the form factor method, where the effective
coupling constant decreases with the increasing momen-
tum.

With the determined effective coupling constants for
corresponding Υ(nS), we can proceed with the calcula-
tions for the decay widths of the Υ(nS)→ d̄∗(2380)+X
processes. In the calculation, gb̄qB(nS) for different nS
states take the same values as those in the corresponding
deuteron case. However, we have no information on the
momentum distributions of the d̄∗, i.e., we do not know
the exact values of p0 and Λ. Since the mass of d∗ is
larger than that of the deuteron, one can imagine that
p0 for the d̄∗ is smaller than that for d̄. Therefore, in our
calculation, p0 and Λ in the d̄∗ case are chosen properly
to be in relatively large ranges. For example, for Υ(nS),
p0 is chosen to be in the range 0.05−0.2 GeV, which is
smaller than that in the anti-deuteron case. The range
of Λ is chosen to be 0.3−0.6 GeV for Υ(1S) and Υ(2S)
and 0.3−0.7 GeV for Υ(3S). Similar to the d̄ case, for
d̄∗, the final momentum distributions are obtained by
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inserting the form factors of d̄∗ into Eq. (9). The re-
sultant momentum distributions are shown in Fig. 3 by
dashed lines. The left-hand dashed line in each figure
is for (p0,Λ) = (0.05 GeV,0.3 GeV) and the right-hand
dashed line is for (p0,Λ) = (0.2 GeV, 0.6 GeV (0.7 GeV
for Υ(3S))). It is found that the smaller the momentum
of d̄∗, the lower its production rate.

In Fig. 4, we show the decay widths of Υ(nS)→d̄∗+X
versus p0 and Λ using 3-dimensional figures. The fig-
ures, from left to right, correspond to Υ(1S), Υ(2S) and
Υ(3S), respectively. From the figure, one can see that
the decay widths increase with increasing p0 and Λ. For
Υ(1S), the predicted range of width is from 16×10−5 keV
to 71×10−5 keV. The smallest number is for p0=0.05 GeV
and Λ=0.3 GeV, while the largest number is for p0=0.2
GeV and Λ=0.6 GeV. Compared with the decay width
of Υ(1S)→d̄+X, the production rate of d̄∗ is suppressed
by about 2−10 times. For Υ(2S) and Υ(3S), the widths

are in the ranges from 9.6×10−5 keV to 42×10−5 keV
and 4.4×10−5 keV to 24×10−5 keV, which are also about
2−10 times smaller than the corresponding cases of d̄.
The production rates of d̄∗ are smaller than d̄, mainly
because of the mass difference between d̄∗ and d̄. The
difference of the wave functions has only a slight influ-
ence, though the shapes of their wave functions are quite
different.

The calculated momentum of d̄∗ is likely in the range
0.3−0.8 GeV. Therefore, if we want to find d̄∗ in Υ(nS)
decays, we need to detect it in this momentum region.
With the chosen parameter ranges, the production rate
of d̄∗ is suppressed by 2−10 times compared with the
corresponding production rate of d̄. Finding d̄∗ is still
within experimental ability [27]. However, if the momen-
tum of d̄∗ is concentrated in an even smaller region due
to some special mechanism, d̄∗ will be hard to discover
from Υ(nS) decays at current experimental facilities.

Fig. 4. (color online) The predicted decay widths of Υ(nS)→d̄∗+X versus p0 and Λ. The figures, from left to right,
are for Υ(1S), Υ(2S) and Υ(3S), respectively.

Table 1. The coupling constants, parameters of the momentum distribution, and decay widths for the process of
Υ(nS)→d̄ (d̄∗(2380))+X.

state gb̄qB(10−3) pd̄0/GeV Λd̄/GeV Γd̄/(10−5 KeV) pd̄
∗

0 /GeV Λd̄
∗

/GeV Γd̄∗/(10−5 KeV)

1S 2.5 0.24 0.80 154 0.05−0.2 0.3−0.6 16−71

2S 1.9 0.25 0.78 89 0.05−0.2 0.3−0.6 9.6−42

3S 1.3 0.27 0.87 47 0.05−0.2 0.3−0.7 4.4−24

4 Summary

We calculated the widths of semi-inclusive decays of
Υ(nS)→ d̄∗(2380)+X. With the help of crossing sym-
metry, the decay widths are obtained by investigating
the imaginary part of the forward scattering amplitudes
between d∗ and Υ(nS). The wave functions of the
deuteron and d∗ are obtained from chiral SU(3) quark
model calculations, and the wave functions of Υ(nS) are
calculated by solving the Schrödinger equation with a
Cornell potential. In the Υ(nS)−d∗ scattering, as a rough
estimation, a s-channel B-meson exchange is assumed as
a dominant interaction where the basic coupling con-

stant gb̄qB is phenomenologically determined by fitting
the observed partial decay widths of the Υ(nS)→ d̄+X
processes. To compensate for the lack of information
about X, a Gaussian function is introduced and p0 and
Λ in the function are obtained by reproducing the exper-
imental momentum distributions of d̄. For the d̄∗ cases,
since we have no information on the momentum distri-
bution of d∗ in the final states, we study d∗ in relatively
large ranges for p0 and Λ. The calculated momentum
of the generated d̄∗ is in the range 0.3−0.8 GeV. The
overall widths of Υ(nS) (n=1,2,3) decaying into d̄∗+X
are about (16−71)×10−5 keV, (9.6−42)×10−5 keV, and
(4.4−24)×10−5 keV, respectively, which are about 2−10
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times smaller than those in the d̄ cases. It is still within
experimental ability to find d̄∗ in Υ(nS) decays. The dif-
ference in the wave functions between deuterons and d∗

has only a tiny influence on the productions of d̄ and d̄∗.
The suppression of the production rates of d̄∗ is mainly
due to the mass difference (or phase space difference)
between d̄ and d̄∗. We summarize our obtained values
of the coupling constants, parameters for momentum
distribution, and decay widths in Table 1. The labels

d̄ and d̄∗ are shown explicitly for these two cases. As a
conclusion, it is very likely that one can find d̄∗(2380) in
the semi-inclusive decays of Υ(nS).

The authors thank F. Huang for providing the wave

functions of the d∗ and deuteron, and thank Z. X. Zhang,

C. Z. Yuan and C. P. Shen for helpful discussions. Chao-

Yi Lü is grateful to Yu Lu for suggestion on Mathemat-

ica.

Appendices A

Jacobian transformations for the Υ, nucleon and deuteron
systems, respectively.







~pη=
1

2
(~pb−~pb̄)

~k=(~pb+~pb̄),
(A1)



















~pρ=
1

2
(~pu−~pd1

)

~pλ=
1

3
(~pu+~pd1

−2~pd2
)

~pn=(~pu+~pd1
+~pd2

),







~pR=
1

2
(~pn−~pp)

~pd=(~pn+~pp),
(A2)

where ~pρ, ~pλ and ~pη are the internal momenta of the nu-
cleon, and internal momentum of Υ, respectively. ~pn and ~k
represent the momenta of the nucleon and Υ, respectively.
~pR denotes the relative momentum between nucleons, and ~pd
is the center of mass momentum of the deuteron. The mo-
menta on the right-hand side of the equations are those of
the particles labeled by the subscripts.
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