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Abstract: The energy per particle B, in nuclear matter is calculated up to high baryon density in the whole isospin

asymmetry range from symmetric matter to pure neutron matter. The results, obtained in the framework of the

Brueckner-Hartree-Fock approximation with two- and three-body forces, confirm the well-known parabolic depend-

ence on the asymmetry parameter = (N — Z)/4 (ﬁz law) that is valid in a wide density range. To investigate the ex-

tent to which this behavior can be traced back to the properties of the underlying interaction, aside from the mean

field approximation, the spin-isospin decomposition of B, is performed. Theoretical indications suggest that the ﬁz

law could be violated at higher densities as a consequence of the three-body forces. This raises the problem that the

symmetry energy, calculated according to the ,82 law as a difference between B, in pure neutron matter and symmet-

ric nuclear matter, cannot be applied to neutron stars. One should return to the proper definition of the nuclear sym-

metry energy as a response of the nuclear system to small isospin imbalance from the Z = N nuclei and pure neutron

matter.
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1 Introduction

Over the last two decades, the nuclear symmetry en-
ergy has been one of the most studied topics in nuclear
physics [1]. Indeed, the behavior of the isovector part of
the nuclear effective interaction, and the corresponding
region of the nuclear Equation of State (EoS), is quite
controversial once we move away from normal density.
Nevertheless, this information is essential in the astro-
physical context for understanding the properties of com-
pact objects such as neutron stars, whose crust behaves as
low density asymmetric nuclear matter (ANM), and
whose core may touch extreme values of density and
asymmetry [2, 3]. The low density behavior of the sym-
metry energy also affects the structure of exotic nuclei
and the appearance of new features of the neutron skin,
which are currently under intense investigation [4, 5].
Moreover, the symmetry energy also plays a crucial role

in the dynamics of heavy-ion collisions involving neut-
ron-rich nuclei, on which several studies are concentrat-
ing nowadays [1, 6-9]. The theoretical study of the nucle-
ar matter symmetry energy has been conducted starting
from realistic interactions, including meson exchange
[10, 11] and chiral forces [12], and from phenomenolo-
gical interactions, such as the Skyrme forces [13] and re-
lativistic approaches [14, 15].

The symmetry energy is the response of symmetric
nuclear matter (SNM) to a small neutron-to-proton imbal-
ance f (we assume B> 0). Consistent with the empirical
nuclear mass table, where the symmetry energy is intro-
duced to reproduce the binding energies in isobaric
chains, the symmetry energy is obtained from the second-
order truncation of the energy per particle in calculations
of isospin ANM in terms of the asymmetry parameter £.
The symmetry energy has been frequently calculated as
the energy shift between pure neutron matter (PNM) and
SNM assuming a 8 linearity in the full asymmetry range,
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i.e. 0 <B< 1. This assumption, henceforth referred to as
the 8% law, has been validated by one of the first abinitio
ANM calculations in the Brueckner-Hartree-Fock (BHF)
approximation with realistic two-body forces (2BF) [10],
and was confirmed by extending the calculations to three-
body forces (3BF) [16]. More recently, the 5> law was
used to extrapolate all asymmetry range abinitio calcula-
tions performed for neutron matter with small proton
fractions [12]. However, there is not enough awareness
that this behavior could be invalidated when the mean
field approximation is applied far from the saturation
density. Here, we intend to revisit this feature in connec-
tion with the basic properties of the interaction, which re-
quires the spin-isospin decomposition of the potential en-
ergy in ANM. Although such a decomposition has been
previously introduced in several studies [10, 11, 17-20],
the origin of the B? law, in terms of the individual com-
ponents, deserves further investigation, in view of future
extensions of the mean field approximation requested by
the investigations of neutron stars and exotic nuclei in
density and asymmetry ranges beyond the presently ac-
cessible.

2 Theoretical background

The symmetry energy is the linear response of the
nuclear system to a small neutron-to-proton imbalance
B < 1, that induces an isospin shift of the single-particle
potential Awu; = u(8) —u.(0) between protons and neut-
rons (T =n, p). It is easily proved that at the total density
p, this is [21]

1
Auy —Auy = ZP,BN(;] (Fon+Fpp = 2F ], (M

where Ny l# is the effective interaction, and Ny is the
single-particle level density at the Fermi energy e of
SNM. The difference F7. = F. —Frr (r #7’) is related to
the isovector Landau-Migdal parameter. Introducing the
parameter F’ = (F, + F})/4 [21], the symmetry energy can
be written as

2
Esym = Tsym + Usym = Tsym + §€FF s 2

where Tgym and Ugyy are the kinetic and potential com-
ponents of the symmetry energy. Eq. (1) is only valid for
B% < 1. Let us consider first the low density limit, where
2BF gives the dominant contribution to the nuclear force.
To make a closer contact with the bare interaction, let us
consider the Brueckner theory, where the G matrix plays
the role of the effective interaction. Assuming the angle
average approximation in the Brueckner-Bethe-Gold-
stone equation [22], the G matrix G457 in SNM keeps the
symmetries of the bare interaction Vy37, where J, S and T
are the total two-body angular momentum, spin and

isospin, respectively. In the case of low density, L =0 is
by far the most important partial wave (the contributions
with L > 0 can be neglected), Eq. (1) can be recast in the
form

1
Aup —Auy, = zpﬁ[gghggi,—gﬁ},—gig > 3)

where J is omitted for simplicity. G°' (G'°) is the isospin
triplet (isospin singlet) part of the effective interaction
that is coupled to the spin singlet (spin triplet) due to the
Pauli principle. In the low density region, we can assume
a weak density dependence of the G matrix. Since
Gn+G, =2V and G3T ~ VST, one can conclude that
the energy asymmetry is driven by the difference between
the spin singlet and spin triplet components, as expected
from the basic property of the spin dependent interaction.
Since the latter is independent of isospin, the isospin shift
of the single-particle potential, Eq. (3), is linear in £ and,
consequently, the isospin shift of the potential energy is
quadratic in f. When L > 0 and L is odd, there are contri-
butions from the S =7 =0 singlet and the S =7 =1
triplet. Both are expected to be isospin independent for
the same reason as in the preceding cases.

This property means that the potential energy is lin-
ear in 2. Therefore, one can extend the calculations of
the symmetry energy potential as a difference of the en-
ergy potential U(p) between 8=1 (PNM) and 8=0
(SNM):

Usym(p) = UPNM(,O) - USNM(p)- (4)
This is a simple form of the 8> law, used to calculate the
symmetry energy of nuclear matter.

Let us consider the high density regime, in which 3BF
is dominant. It is well known that 3BF is necessary to re-
produce not only the saturation density of nuclear matter
but also the observed masses of neutron stars [23, 24].
The simplest way to extend the BHF approximation while
keeping its mean field character, is to replace 3BF by a
density-dependent 2BF, weighted by the third particle
through its correlation with the other two particles [25].
In the coordinate space, it can be formally written as

W(r12)=Pfd3r3 S (r13)g* (r3)V(r1,ra,13), (%)

where g(r) = 1-n(r), and n(r) is the defect function at a
distance r =r;—r; between particles i and j. In the mo-
mentum representation, the 3BF contribution to the
isospin shift of the single-particle potential Au; is given by

1 - - - -
Auy, — Ay, = §pﬁ[’VV2,£ + ’VV?,II, - (VVSII, - (VV,llg] , (6

where, in the uncoupled isospin representation,
(W‘r‘r’ = Z ne» VTT’T”gTT” 8y (7)
=

and n. is the occupation number of the third nucleon (we
omit the momentum and spin labels for simplicity). Ex-
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tending the discussion of Eq. (3) to Eq. (6), we can con-
clude that the symmetry energy is driven by the differ-
ence between the spin singlet and spin triplet compon-
ents of 3BF.

The reduction of 3BF to a density dependent 2BF en-
tails a non linear dependence on p, and p, in ANM. In
particular, the contribution of 3BF stemming from the re-
lativistic corrections [25] takes the form

(W‘r‘r' ~V- Zpif//3g77"gr’r”, (8)
P

which is the isospin independent defect function.

Therefore, 3BF is strongly isospin dependent and we
expect the energy potential shift to violate the > law, and
Eq. (4) to be unsuitable for the calculation of the sym-
metry energy at high nuclear density. Of course, these
theoretical considerations are restricted, at least in part, to
the mean field approximations, such as BHF and the ad-
opted model for 3BF.

3 Numerical calculations

The energy per particle of ANM has been calculated
in the framework of the BHF approximation. Two ver-
sions of 2BF and 3BF have been used: Argonne V18 plus
consistent 3BF [26], and Bonn B plus consistent meson
exchange 3BF [24, 27]. From the calculations with 2BF
only, plotted in Fig. 1, it turns out that the symmetry en-
ergy is 30 MeV at the saturation density and 50 MeV at
0.4 fm” with both forces. In the calculations with 2BF
plus 3BF, plotted in Fig. 2, the agreement is not very
good. We obtained 32.1 MeV with Argonne V18 and
33.8 MeV with Bonn B at low density, and 73.7 MeV
with Argonne V18 and 77.1 MeV with Bonn B at high
density. This discrepancy comes from the meson para-
meters of the two 3BFs which are slightly different.

As clearly seen in Fig. 1 and Fig. 2, the results exhib-
it a linear dependence on 82, which supports the applica-
tion of the 8 law, expressed by Eq. (4), in calculations of
the symmetry energy. This study is intended to discuss
the microscopic origin of the 52 law in view of the pos-
sible extensions to very high densities and calculations
beyond the mean field approximation. We are not con-
cerned with the contribution of the kinetic part to the
symmetry energy because its departure from the 8> law is
negligible at any density.

In Table 1, we report the spin-isospin partial wave de-
composition of the potential energy per particle for two
densities, where L is the two-body orbital angular mo-
mentum. In the last two columns, the odd vs. even angu-
lar momentum contributions to the symmetry potential
Usym, defined in Eq. (4), is reported. At the saturation
density, the total Ugym, including the kinetic component
(12.96 MeV), gives a symmetry energy on the order of 30
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Fig. 1. (color online) Energy shift vs. asymmetry parameter
for various densities with the two-body Argonne (left) and
Bonn B (right) potentials.
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Fig. 2. (color online) Energy shift vs. asymmetry parameter

for various densities with 2BF plus 3BF, Argonne V18 plus
its consistent 3BF [16] (left), and Bonn B plus its consist-
ent 3BF [27] (right).

MeV for both two-body potentials, which is in good
agreement with the empirical value. At high densities, the
role of the odd angular momentum becomes increasingly
important when 3BF is included. It is noteworthy that the
aforementioned agreement of the symmetry energy
between the two interactions adopted in the BHF calcula-
tions, occurs despite the different values of the partial
wave components, especially in the isospin singlet chan-
nel. At the saturation density, the isospin triplet compon-
ents change slightly when going from SNM to PNM, so
that the isospin singlet 7 =0 term plays a major role in
determining the symmetry energy, as previously dis-
cussed. In contrast, at the higher densities, the isospin
triplet 7 = 1 significantly contributes to the enhancement
of the symmetry energy.

Since the 3BF strength is still small at the saturation
density, the isospin triplet is much smaller than the
isospin singlet. However, at the density of 0.4 fm”, ow-
ing to the dominance of the odd L components, 3BF rein-
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Table 1.

Angular momentum decomposition of the potential energy per particle (MeV) calculated with Argonne V18 and Bonn B without 3BF (upper

values), and with their respective consistent 3BF (lower values) in the BHF approximation. Due to anti- symmetrization of the effective interaction,

the sum L+S5+7 must be odd, and in PNM, 7'= 1. In the last two columns, the angular momentum decomposition of the symmetry potential, Eq. (4), is

reported.
UT=1 UT=1 UT=0 Usym
POT p/fm73 PNM SNM SNM
odd L even L odd L even L odd L even L odd L even L
0.175 -0.25 —23.44 -0.34 -19.98 5.05 —24.86 -4.96 214
AV18
0.400 11.74 -39.21 3.22 -36.34 13.62 —35.88 -5.1 33.01
0.175 0.29 —23.41 -0.14 —20.44 5.77 —25.46 —5.34 22.49
BONN B
0.400 10.10 -39.63 2.95 -37.17 16.22 -39.07 -9.07 36.61
AV18 0.175 -1.75 -17.52 -2.71 -15.79 3.57 -23.33 -2.61 21.60
+3BF 0.400 17.47 —6.63 —4.15 -15.16 7.39 —27.88 14.23 36.41
BONN B 0.175 -2.67 —-15.51 -3.19 -16.57 2.40 -21.51 —1.88 22.57
+3BF 0.400 14.26 6.49 —6.04 -8.77 2.19 -20.58 18.11 35.84

forces the spin triplet component of the symmetry energy,
and the symmetry energy becomes enhanced.

In the further discussion of the spin-isospin decom-
position of the potential energy per particle, we concen-
trate only on the results with the Bonn B potential, be-
cause the main conclusions do not change when moving
from Bonn B to Argonne V18 potential. Thus, in Fig. 3,
we report the spin-isospin decomposition of the sym-
metry potential shift AU(p,B)st = U(p,B)st — U(p,0)sT
with the Bonn B potential. With 2BF only (left side of
Fig. 3), all components exhibit a linear behavior in 82 up
to high density. Such a result was expected from the dis-
cussion following Eq. (3). A small deviation in Uy is ir-
relevant for the behavior of the total potential energy.

Up to the saturation density, the isospin singlet
Uso (S =0,1) gives by far the largest contribution to the
isospin shift, whereas the isospin triplet part, dominated
by Uy, is approximately constant, which is consistent
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with the discussion in Sec. II. In particular, the L=0
tensor component of the 3SD; channel is the largest, a
well-known result of the first ab initio calculations [10,
28], more recently confirmed in Ref. [29]. At higher
densities, the repulsive effect of the § =1 and 7 = 1 chan-
nel becomes important. Thus, the isospin triplet term be-
comes increasingly competitive, resulting in a monotonic
increase of the symmetry energy.

Above the saturation density, the effects of 3BF on
the potential energy cannot be neglected, as shown in Fig.
3 (right). As firmly established long ago, 3BF is neces-
sary to reproduce not only the saturation density of nucle-
ar matter but also the empirical masses of neutron stars
[10]. In the high density range, 3BF is increasingly re-
pulsive for all channels and is stron%Iy isospin dependent,
as shown by Eq. (8). At p=0.6 fm", the individual spin-
isospin channels exhibit a considerable deviation from the
% law. In particular, the S = 1 and T = 0 energy potential
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Fig. 3. (color online) Spin-isospin decomposition of the isospin shift of the symmetry potential vs. ﬂz for Bonn B (left), and Bonn B

plus consistent 3BF (right).
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shift driven by 3BF exhibits an isospin transition from
positive to negative slope. This is a most impressive res-
ult because AUjp at =0 and B =1 is large in both cases,
but because of the opposite sign, the 8 law yields a small
and unphysical result. The other components are also im-
portant, but the 8> law does not have such a dramatic ef-
fect. All deviations are expected to become more pro-
nounced at higher densities. At such densities, the con-
vergence of the present BHF numerical code is not yet
satisfactory. However, the present calculations show that
the total energy potential does not violate the 5? law in
the considered density range. This can only be justified
by accidental compensation of various corrections of the
order higher than 2.

4 Summary

The primary objective of this work is to study the
nuclear symmetry energy and the 8% law, which is used in
calculations of the symmetry energy in ANM in the mi-
croscopic BHF framework. The 82 law is supported by
numerical calculations in the mean field approximation in
a density range up to four times the saturation density. To
relate this study to the nuclear interaction symmetries, a
calculation regarding the spin-isospin decomposition of
the potential energy was performed in the BHF approx-
imation with 2BF and 3BF. This latter force is necessary

to extend the calculation beyond the saturation density.
At lower densities, it turns out that the symmetry energy
is essentially driven by the isospin singlet components of
the nuclear two-body interaction, which is weakly de-
pendent on the isospin (Sec. 2), so that the mean field ap-
proximation alone can justify the validity of the 82 law.
At higher densities, the isospin triplet components play a
major role, but they all slightly depart from the 8% law
due to the strong isospin dependence of 3BF. In particu-
lar, the contribution of the S =1 and 7 =0 channel
changes sign when going from low to high asymmetry.
Despite the fact that the total potential energy still agrees
with the 82 law, a noticable violation of the 8 law is ex-
pected from 3BF at densities higher than 0.6 fm”, in addi-
tion to the mean field approximation which is not dis-
cussed here.

Therefore, it is worthwhile to extend this investiga-
tion in two directions. First, the density range should be
enlarged beyond 0.6 fm” for an application to neutron
star cores. For this purpose, an effort is being made to im-
prove the convergence of the BHF numerical code at
higher densities. Second, the generalization of the
Brueckner theory beyond the mean field approximation to
include the medium polarization is also expected to viol-
ate the 8% law, especially at low densities. Such calcula-
tions are now possible after the recent extension of the in-
duced interaction theory of collective excitations to ANM
[30].
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