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Abstract: In this paper, we propose a homogeneous curvaton mechanism that operates during the preheating process
and in which the effective mass is running (i.e., its potential consists of a coupling term and an exponential term
whose contribution is subdominant thereto). This mechanism can be classified into either narrow resonance or broad
resonance cases, with the spectral index of the curvaton consituting the deciding criteria. The inflationary potential is
that of chaotic inflation (i.e., a quadratic potential), which could result in a smooth transition into the preheating pro-
cess. The entropy perturbations are converted into curvature perturbations, which we validate using the N formal-
ism. By neglecting the exponential term's contribution to the curvaton potential, we calculate the power spectrum P,
and the nonlinear non-Gaussian parameter fyz. Our calculations analytically show that these two observables are in-
dependent of the inflaton potential. Finally, when the curvaton decays (and the inflaton field vanishes), the exponen-
tial potential approaches a constant value similar to that of the cosmological constant, which may play the role of dark
energy.
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1 Introduction

In mainstream inflationary theory, curvature perturba-
tions are generated by inflationary perturbations seeding
temperature fluctuations in the cosmic microwave back-
ground. However, this broad class of theories is strongly
determined by the shape of the inflationary potential. To
relax this stringent condition, many alternative mechan-
isms have been proposed. The curvaton mechanism is one
such model; the curvaton field featuring in this mech-
nism is an additional scalar field that is subdominant dur-
ing inflation. After inflation, the density of curvatons be-
comes increasingly significant; this generates curvature
perturbations exceeding those arising from inflation [1-3].

All standard model (SM) come from preheating or re-
heating period [4-10]. In particular, for the narrow reson-
ance case, Ref. [6] presents a general discussion within
the framework of the Wentzel —Kramers —Brillouin
(WKB) approximation. The reheating temperature is not
sufficient to permit coupling between the inflaton and
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other SM particles; thus, a preheating process is mandat-
ory [11] in certain inflationary models. Most of these
models posit a perturbative curvaton decay once inflation
has completed [12]. However, the non-perturbative de-
cay of curvatons has also been suggested [13]. Moreover,
the curvaton can be dubbed as a source to generate
amount of gravitational waves (GW) during preheating
[14]. Because of the rich phenomena associated with
curvatons, they can be embedded into multi-field frame-
works [15].

Curvatons might couple to the Higgs field; if so, the
curvaton mass can vary significantly [16, 17]. In this pa-
per, we propose a similar idea; that is, we consider a
coupling between the inflaton and the curvaton fields,
through which the curvaton mass can be varied. Gener-
ally, curvaton decay occurs when the curvaton decay rate
I', approaches the Hubble parameter /1. Relaxing the
condition that the curvaton condensate dominates over its
perturbations could yield large local non-Gaussianities
[18]. However, current observations [19] severely con-
strain these models: the (local) non-Gaussianity fy,; can-
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not be too large (|fy.| < 10), ruling out curvaton models
that produce large non-Gaussianities. However, this local
type of non-Gaussianity can be suppressed by a quadratic
plus quartic potential [20] or by a string axionic potential
[21, 22]. Taking the local non-Gaussianity into account
will strongly constrain the curvaton decay; for more de-
tails on the so-called "fraction of curvaton energy dens-
ity" during the radiation period, please see the recent in-
vestigations described in [23].

The curvaton field is generally regarded as an inde-
pendent additional scalar field to the inflaton field. Thus,
curvatons could play the roles of various particles (e.g.,
axions [24]), to account for dark matter (DM). Because of
these axion roles, the curvaton could also produce axion-
ic-primordial blackholes [25, 26]; in some sense, this ex-
plains DM. Furthermore, primordial blackholes acting as
DM could be generated by curvaton and inflaton mixed
models [27].

In the traditional curvaton scenario, curvature perturb-
ation are generated after inflation because the curvaton
outlives the inflaton. Meanwhile, the main contribution to
curvature perturbations arises from the balance between
the curvaton and inflaton; is considered as an assumption
for curvaton mechanisms. In our model, the curvaton
field is generated by the inflaton decay; this entails a dir-
ect coupling between the curvaton and inflaton fields. For
this scenario, we treat the curvaton potential as contain-
ing a coupling term that dominates and an exponential
term that mimicks the dynamical behavior of dark energy.
When the curvaton decays into other particles (i.e., Higgs
particles, W* e.r.c), its potential approaches a constant
value, which is considered to play the role of a cosmolo-
gical constant. In some sense, our scenario could account
for the origin of dark energy from a phenomenological
perspective. Therefore, we comprehensively analyze the
curvaton, from its generation during the inflationary peri-
od up to the very late Universe (i.e., up to the present
dark energy epoch).

This paper is organized as follows. In Section 2, we
introduce our inflationary model with its two scalars: the
inflaton and the curvaton. The curvaton potential con-
tains two terms: a coupling term (between the curvaton
and inflaton) and an exponential term. In Section 3, we
describe the curvaton's production through inflaton de-
cay, in terms of parametric resonance preheating. In Sec-
tion 4, the detailed power spectrum calculation and cor-
responding local non-Gaussianity are given in the 6N
formalism. In Section 5, we illustrate how dark energy is
generated from the exponential potential of the curvaton,
from a phenomenological perspective. Finally, Section 6
concludes the paper.

We work in natural units, in which c=1=#8;
however, we retain the Newton constant G.

2 The model

The (p)reheating process provides a mechanism for
generating particles and also produces entropy perturba-
tions. An essential component of the preheating process is
the parametric resonance, which requires a coupling
between the inflaton field and another field. Because the
(p)reheating mechanism is rather crude, numerous heur-
istic approaches have been used to investigate it.

To realize the curvaton mechanism within the frame-
work of preheating, Ref. [28] presented a numerical study
of the curvature perturbations produced by the entropic
field; this can be regarded as a particular realization of
the curvaton mechanism during the preheating process.
Thus, it becomes possible to directly construct a curvaton
scenario. Subsequently, to account for the origin of dark
energy, we assume that the second term of the curvaton
potential is of exponential form. Therefore, the total ac-
tion can be constructed as follows:

M3 1
S = fd4x \/—g{TPR — Eg’“’Vﬂqﬁqub — Eg’“’VHXVVX

8 X
—V(¢)—V%X2V(¢)—/106XP [—AIE]}, (1)

where y and ¢ denote the curvaton and inflaton, respect-
ively; R denotes the Ricci scalar; g is the determinant of
guw; and go, Ao, and A, are dimensionless parameters de-
termined by the Lagrangian.

To better understand this scenario, we further elabor-
ate the action expressed in Eq. (1). In some sense, the
curvaton could be produced via the inflaton decay [29];
however, the branching ratio cannot be too large. In the
following, we illustrate the curvaton's production via
parametric resonance in preheating processes.

3 Curvaton production via preheating

The curvaton field is generated by parametric reson-
ance. Generally, the curvaton production mechanism in-
cludes two terms: the background (considered as a clas-
sical field) and the quantum fluctuations of the curvaton.
For simplicity, we focus on the main contribution of the
background field, assuming it to depend only on time.

We follow the standard procedure described in [5, 9].
First, we require the equation of motion (EoM) for the
curvaton field y; by varying the action (Eq. (1)), we ob-
tain the EoM of the background y field as

= 80 2.0. Aodi X
+ “2 -2 xo, 2
X M%mqﬁ)( M,,[ IMP] (2)

where the variable substitution § = a2y was used and

9 3.
the term ZH2)~(+ EH} was neglected. To solve Eq. (2),
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the background solution for ¢ is required. Its EoM is de-
rived using

dvi¢)

¢+3Hp+ —— ao

=0, 3)
1 1 g
where 9,V = 8¢(§m2¢2 += 20 L0y m2¢2] Here, we define

the effective mass of the inflaton as m?; = m* + &X m?,

P
which means that meg ~ m,0,V = m*.¢ when % V<1,
P
as illustrated in Fig. 1. As seen in the derivation of Eq.
3
(2), we neglect gH + 2H,\/ Later on, we will show that
this is a ratlonal assumption. Meanwhile, making the
variable substitution @(r) = a*?¢(r) (where a is a scale
factor) and implementing the same trick as was used for
deriving Eq. (2), Eq. (3) becomes
$+mid =0, @
for which the solution is
¢(1) = a ' cos(megt). Q)

We plug Eq. (5) into Eq. (2) and rearrange the result;
after some calculation, this equation becomes

2
= 8om ~ gO~
+ ZM%, ¢(2))(a S 2M2 X¢0a 3 cos(2megt)
43
+ e X AoA1/Mp. (6)

P
Thereafter, we set z = megt; thus, Eq. (6) becomes
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Fig. 1.  (color online) Density plot of spectral index (12):
The horizontal line corresponds to the e-folding number N,
whose range is 50 <N <60. The vertical line denotes the
value of gy , which varies from 0.000001 to 0.023. The right-
hand panel matches the value of n, to its corresponding col-
or.

v+ 2M2¢2~ a+ 2M2¢ sva cos(22)
47 5
Tk A1/ (megMp), (7
eff " P

where we have used the approximation mes~m, and
~r

dy . .

=X Next, following the notation of Ref. [6], we
z

write the standard form as

X"+ (Ax+2qrcos[2z])y = c, (®)

where ¢ = /l()/l]/(mzﬂpMp); subsequently, we compute the
correspondence as follows:

243 Ao
i = 2M§ + ©)
meff p
#3580 s
Gk=———>da . (10)
22

As described in Section 2, the exponential potential

/loexp(—/llMi) mimicks the evolution of dark energy;
thus, the y ﬁgld approaches zero and Ay is determined to
be of the same order as dark energy. By comparing this to
the other terms in Eq. (8), we can set ¢ ~ 0. To identify
the range of g, we analyse the spectral index of the
curvaton; detailed calculations are shown in the Ap-
pendix. The formula for the curvaton's spectral index is as
follows:

ny, = =2€ =1, (11)

where € and 7. are defined in Egs. (47) and (50), re-
spectively; the spectral index is expressed in terms of the
leading orders of slow-roll parameters. We assume that
the slow-roll conditions apply to the inflaton and
curvaton. In the curvaton scenario, the inflaton energy
density dominates before it decays into the curvaton; this
is also an assumption for the curvaton mechanism. Con-
sequently, the value of the Hubble parameter is strongly
determined by inflation. Then, the slow-roll approxima-
tion of inflation is adopted, through which we derive that

M2 v’ 2 2
—P(—) , where V' = a—V Because N ~ i ,
2 3 Az

Vv
we can easily compute that Because

V/l (X)

n=- , we can also implement the slow-roll ap-

3 H?
2vw>
proximation and focus on the V" (y) =

€] =€y =

Elzﬁ.

term. Sub-

sequently, we find that - —4go, irrespectlve of the infla-
tion model. Thus, by combining these two parts, we de-
duce that

1

ny =_ﬁ +4go, (12)

where N denotes the e-folding number. From this equa-
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tion, we can see the varying trends of n, in Fig. 1; fur-
thermore, using the observational constraint of n, ~ 0.035
from [30], the value of gy~ 0.013 can be determined as
being of order 1072,

The value of the spectral index n, is strongly determ-
ined in a large class of inflationary models; in these mod-
els, the e-folding number depends only on the type of
slow-roll inflation [31]. In some sense, n, is independent
of inflation. From another perspective, gy is determined
by this constraint. In Eq. (10), it can be seen that ¢ is also
determined by ¢, where it represents the amplitude of
the inflaton field. When inflation ends, the value of ¢
could be of order unity. If so, ¢ will be of order unity as
well. When ¢, <1 and ¢ > 1, Eq. (8) can be treated in
terms of narrow resonance and broad resonance cases, re-
spectively.

3.1 Narrow resonance

In this case, gx < 1, which means that go¢j < 2M5.
Ref. [6] provides a general framework for considering
narrow parametric resonance. The crucial physical quant-
ities are the decay rate I', and the number density of res-
onance Ngs. I, denotes the quantity of energy trans-
ferred to the curvaton field. N, represents the number
density of curvatons.

From Ref. [6], we directly extract the formulas for T',
and N

2
Nyes = sinh? (%) (13)
Iﬂ)(a)res
2 2
3
r, = 28! (#) (14)
wres wres

1
where p = §m2¢2, and n denotes the n-th band of

the periodic function; here, g, =g = 820 and
1 2M Pa‘3
Wres = 5 Meft = %w. To acheive efficient curvaton produc-

2
tion, we require that N> 1. As a consequence, it is

simply concluded that 327%p > w?., which means that
the initial value of ¢ considerably exceeds its mass (more
specifically, its effective mass); this is consistent with the
conditions of chaotic inflation [32]. Namely, efficient
production requires a large inflaton field.

3.2 Broad resonance

The theoretical framework described in [5, 9]
provides a general method for studying the broad reson-
ance case corresponding to g > 1. First, the standard
equation can be written as

¥+’ =0, (15)

where

2 2 o2

2 gom~ o 3 ML 5 _3 04
w =+ a”+ a ” cosCmegt) + ——, (16
2M2 % 2M2 % (2meqt) M (16)

and y = %{ Though particles are produced in highly non-
equilibrium processes, we can still use the WKB approx-
imation to analytically solve Eq. (16); for this, we use the
assumption of an adiabatic process operating within a
very short time interval, from ¢ to #;.;. The general solu-
tion under the WKB approximation is

kb Yk ifwd Br i wdr
W ——e +—¢ , (17)
¢ V2w V2w

where «; and B; are constant under the aforementioned
. 2 2 r ..
assumption, and |ak| —|,Bk| =1. Within this interval,

242 o2
we can also analytically approximate that % ~ ﬁio
¢aa (i1 —1;)* and define two new variables: P
2
2 _ Meg80 5 3 2
T —mqﬁoa (t—fj) s (18)
A3
M2
K=" (19)
eff80 5 3
dca
2 %0
2M2
With these variables, Eq. (17) can be rearranged as
PN
—— + " +7 ), =0. (20)
dr?

Then, we apply a Bogoliubov transformation for coeffi-
cients a; and B in the time interval from #; to 7.

()= Vivemen el )%
Y 7720 Al yeweTin \ B
1+ix? 2 2 . :
where ¢y = argqT’ Gal) | QIS I P (T is a special
2 2 K2

function). Combining this with lak|2 - [,Bk|2 =1 and
nl = |ﬁj{|2, we can derive that

) @y

i+1 -k’ —K*N 0
At =™ 4 (14267 )]

—2e7 VI+e ™ Jni(1+ni)sinbly,,  (22)

Hfot = 2«9}; -+ arg(a;;) - arg(ﬂf{). (23)

To realize continuous production, the value of n;;; must

be enhanced compared to n;. By taking the limit of

i— oo, we find that ny > 1 is satisfied when m«? <1,
which means that

mgﬂgo

2 2

WA 2M;

2 =<
M; n

2 -3
Ppa

24
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From observational constraints, the lower bound can be
given by (setting a =1 and Mp=1)
22043

80

)
mz8ody >

(25)

From the upper bound of meg, a broad range of valid val-
ues for m2.¢3 canbe found, because we have not con-
strained A;, and Ay is of the order of the cosmological
constant; this illustrates the large flexibility available in
our curvaton scenario.

In this section, we analyze the production of
curvatons generated by parametric resonance. During this
process, the curvaton field is composed of two terms: the
background field term and its quantum fluctuation term.
Because the main contribution to curvaton production
arises from the background field, we used the standard
procedure to investigate it. The coupling constraint g, de-
termines whether the parametric resonance is narrow or
broad. In the narrow resonance case, we conclude that the
inflaton is a large field compared to its mass. For the

broad resonance case, we have shown that

s, 20047 . o
mZego¢; > ——, which introduces considerable flexibil-
0

ity into our curvaton scenario.
4 Power spectrum and non-Gaussianity

Quantum perturbations could be produced from the
inflaton or curvaton. Following the traditional curvaton
scenario, we assume that the quantum fluctuations arising
from inflation are negligible [2]. Therefore, we only con-
sider the dominant contribution of curvaton-produced
curvature perturbations.

By comparing to Ref. [28], our curvaton field can be
seen to correspond to the entropy field. Its generation res-
ults in a two-field inflationary theory. Therefore, the ideal
calculation method is the 6N formalism [33-37].

We work in conformally flat cosmological space-
times, for which the metric is a conformal rescaling of the
Minkowski metric,

G =@ Oys Ny = diag(=, +,+,+), (26)
where 7 is conformal time. To compute the curvaton

power spectrum, we solve the operator's EoM for the
curvaton, which follows from the action (Eq. (1)); thus,

[0 +24000- V2 |)(0)+a*V (3. 0) =0, (27)

where V, =0V($,%)/0%; # =d'Ja (a' = dpa) is the con-
formal Hubble rate; V2 =37 6% and we neglect the
curvaton's coupling to gravitational perturbations; this is
justified in most cases, because the curvaton is (to a good
approximation) a spectator field during inflation.

The field ¢ in Eq. (27) satisfies the standard canonic-
al quantization relations:

[0(7, 0,7, (1, )] = i(2n) 6> (#-%), [¢(r,0),%(7,)] =0,

[ﬁX(wa)’ﬁ/\/(T,x_”)] = 07
(28)

where 7, = a*y’ (' = dox) denotes the curvaton canonic-
al momentum. Because we are here primarily interested
in the curvaton spectrum of free theory, it is sufficient to
linearise Eq. (27) in small perturbations around the
curvaton condensate (¢) = ji(n7). We use a standard pro-
cedure to study the dynamics of linear curvaton perturba-
tions; further details of the procedure can be found in the
Appendix.

Using the 6N formalism, the power spectrum can be
given by [38, 39]

2
(aN H*) ’ (29)

Pro=|—
¢ dy 2r

where ON/dy is given by

6_N — lr 1 |:V/(XOSC) _ 3X(XOSC) V’(XOSC)
K 3T X o) | Vi) Xowe | V')
(30)
with yosc and y. being the (Einstein frame) field values at
the moments of oscillation onset and horizon exit during
inflation. The time of curvaton oscillation onset can be
evaluated using

X
Z =1 1
’HX' ’ GD
which can also be written as [38, 39]
= L), (2)
CXOSC

where c is given as 9/2 and 5 when the curvaton begins
to oscillate during the matter-dominated (MD) and radi-
ation-dominated (RD) epochs, respectively. X(yosc) rep-
resents the perturbation generated by the non-uniform on-
set of the curvaton field oscillations; it is written as

1 XOSC V” (XOSC)
X(Yose) = ~1).
(ore) 2(c—3>( V(o) )
When the potential is quadratic, X(yos.) vanishes. Then,
Fdecay roughly corresponds to the ratio between the
curvaton energy density and the total energy density; it is
defined as

(33)

3y 39y
ey S Aprg | 30 +4Q
== gy
Py t Prad Pyt Prad
The non-linearity parameter fyi, is given by [38, 39]
5 5 5
=~ Fecay — = + ——— (1 + A
SNL 6Vdecay 3 + 2rdecay( +A), (395

where 4 is given by
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A= [ VI(XOSC) _ 3X(X0sc):|_l [ X’(Xosc) + V”(/\/OSC)
V(Xosc) Xosc 1- X(Xosc) |4 (Xosc)
Vi) | [V ese)  3X(ose) |
-(1-X osc -
( (X )) V’(Xosc)} " [ V(Xosc) Xosc }
y [ V' Ocose) _ ( V'o(osc))2 33X Orose) 3Xcvm>]
V(XOSC) V(XOSC) XOSC XOSC

(36)

Here, A is characterized as a curvaton with a generic en-
ergy potential, which experiences a non-uniform onset of
its oscillation. Its validity only requires a sinusoidal oscil-
lation when Eq. (31) is satisfied. In contrast to this meth-
od, Ref. [40] introduced a generalized N formulism. Us-

5 ” 5 5
v = ﬂ(l +g;,)2 )_§_€’
T = Idecay, they assumed that g « y when the curvaton po-
tential is quadratic, for which case g” = 0; meanwhile, g
represents the value of the curvaton field between the
Hubble exit and the start of oscillation. Generally, their g
corresponds to our 4.

In what follows, we use our framework to show that
the power spectrum P, and local non-Gaussianity fy;, are
independent of the potential of inflation. To compute P,
and fy, the crucial step is to find the relation between
V(vose) and V(y.); namely, we require the relation
between yos and y.. Through the modified Klein-Gor-
don equation for y, we find that

.1 oviy
where y =x(¢t) denotes the background field of the
curvaton. We combine this with the curvaton potential

and the definition dN = Hdr — df = ‘2’, then, we integrate

both sides of Eq. (37), thereby obtaining

ing the formula where

M210g(80Vxose = Adodi Mp + Ao xosc)
2
gV + /10/11

M210g(80 Vs + oAy — Aol Mp)
goV+ /1(]/12

ST TR

We derive the analyt1c relation between yosc and y., in
which the contribution of the Ay can be neglected be-
cause its value is of the order of dark energy (1o ~ 107120
by setting Mp=1). From the slow-roll condition
3MyH* =V, we can derive the relation as follows:

: 39)

1 1
Xosc ZX*CXP[ 68( osc gN*)

where Ny and N, denote the e-folding number during
curvaton oscillation and horizon exit, respectively.
Eq. (39) indicates that the curvaton decays during in-

flation and begins to oscillate in the RD period. Hence, it
is a good approximation of the curvaton value during the
onset of oscillation, which determines the relation
between V(yosc) and V(y,). With this relation, we can ob-
tain the statistical properties of curvatons via Egs. (29)
and (35).

Combining this with the definition of the e-folding
number N = f dtH and the slow-roll condition 3M3 =
(in which the inflaton potential is dominant), one simply
¢ 1 ¢

AMZ 2 4M3
dominant compared to the % Using these approxima-

derives AN =

tions and setting 1y ~ 0 in Planck units, we find that

H. r?
P, =—>_ 40
¢ 972 2 (40)
5r 5 5
=-—+=—-= 41
o et 3 41)

which are independent of the potential of inflation. This
approximation of Ay~ 0 corresponds to the case of

1. . .
A= ~3 in [38, 39]; in fact, the relation between y,s. and

x+(Eq. (39)) is not required. In Ref. [40], fyr recovers
Eq. (41) because the curvaton potential is quadratic and
no nonlinear evolution of the curvaton field occurs
between the Hubble exit and the start of oscillation; this
corresponds to a curvaton decay at uniform total energy
density. Ref. [40] also studied the curvaton decay for a

uniform  curvaton energy density, in  which

fnL=-= (3(1+W) (1+ )+ 1_~3W—4) with
27 g"” F

B 3( +w)QQ,

F=—————— furthermore, they found that when

44+ (-1+3w)Q,°
w— —1, the ampﬁtude of fyp is dramatically enhanced

during a second inflation. However, this does not occur in
our scenario because the curvaton potential (compared to
the exponential part) disappears after preheating, as seen
in Eq. (1). Meanwhile, the shape of the exponential po-
tential does not plateau. Consequently, there is no second
inflationary process for the curvaton. Thus, although we
adopt the method of [40], it does not influence our main
results. To elaborate this scenario, we plot fy; and P;.
Fig. 2 depicts the characterstics of the power spec-
trum in terms of 7gecay and ., it clearly shows that the
power spectrum decreases as y. increases. However, we
cannot calculate the range of the curvaton fraction rate
Faecay- TO consider this range, the plot of fy; is required.
From Fig. 3, we can see the range of rgecay for our model.
Here, we provide a simple analysis of the curvaton
decay. It can be explicitly seen that the curvaton mechan-
ism is realized during the preheating process; meanwhile,
the main contribution to the curvaton's potential is its dir-
ect coupling to the inflationary potential. Hence, the de-
cay of the curvaton will be practically complete after pre-
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Kose

Fig. 2. (color online) Plot of power spectrum: Using the
COBE normalization [30], we set H; =3.0x10~> and find
that Ay =2.1x107?; this corresponds to the purple plate in
the figure, where r = rgecay -

L
25

20
15

10 r=0.12

0.2 0.4 0.6 0.8
Fig. 3. (color online) Plot of fyr. From the Planck Collabor-
ation constraints on fy; found in [19], we show the upper
and lower bounds of fy,. We find that the lower bound of

Fdecay = 0.12.

heating (i.e., the exponential potential becomes negli-
gible compared to the coupling potential). Moreover, the
generation of SM particles mainly occurs via the inflaton
decay because the inflaton energy density is dominant be-
fore preheating. Thus, we conclude that particles are only
produced via the inflaton decay. In terms of the precondi-
tions of the curvaton's decay, its effective mass should
exceed the mass of the target particle. For instance, the
Higgs particle's mass is 125 GeV (of order 107'? in
Planck units); thus, the effective mass of the curvaton
should exceed this. However, this process does not occur
because the effective mass of the curvaton is m, =
¢V -120 X
= (of order 107'<Y), where V(y) = Ao exp( -4 —)
dy? Mp
The same discussions apply to fermions. Finally, a relic
of the exponential potential will remain into the late Uni-
verse.

In this section, we predicted the power spectrum and
non-local non-Gaussianity of the curvaton under the
framework of the 6N formalism; by taking the appropri-
ate approximations for the calculation, our results are
seen to be independent of the inflationary potential. From

Fig. 2 and Fig. 3, the constraints of rgecay can be found
(specifically, for its lower bound). Once the transferral of
energy from the inflaton to curvaton has occured, the
generation of curvature is a natural process.

5 Dark energy epoch

Currently, dark energy is considered responsible for
the accelerated expansion of the Universe; however, its
origins remain mysterious. Of the many proposed mech-
anisms, the cosmological constant is the simplest explan-
ation of dark energy; it was first proposed by Einstein
[41] and was discovered to be capable of functioning as
dark energy by James Peebles e.z.c [42].

In our scenario, the dark energy is mimicked by the
exponential curvaton potential in the action (Eq. (1)).
This action indicates that the effective mass becomes
very small when the inflationary field vanishes; this
leaves only the exponential curvaton potential to domin-
ate and play the role of cosmological constant. The Uni-
verse is currently in a dark epoch, being dominated by
dark energy; thus, the curvaton field should have almost
vanished through decay into other particles; in particular,
the particles of the SM. From the lower bound of
& =70x 10* found in [43] and the good approximation
that H; = H, = 3.0x 10~ in Planck units, one readily ob-
tains that y. =2.1. Then, we use Eq. (39) between yosc
and y.; this relation can approximated to
Xosc = X« €Xp(—2¢gAN), where ¢~3 is used and AN de-
notes the variance of the e-folding number; that is,
AN > 60. Here, we set AN ~ 100. Meanwhile, g, is ap-
proximately constrained as 0.01 from Fig. 1; this yields
Xose = x«exp(=2) ~ 0.28, which is expressed for the mo-
ment at which the curvaton field begins to oscillate,
though it could be even smaller as a result of the decay
and eventual vanishing of the curvaton. From another
perspective, the extra parameter A; is not determined by
observation. Because of the smallness of y,., which de-
notes the final value after decaying, we have consider-
able freedom to choose the range of A;, only being re-

quired to maintain /11% < 1; thus, the exponential po-

tential approaches a Constant Ao. Then, we retain
Ao ~ 107120 in Planck units. This potential naturally plays
the role of a cosmological constant. Finally, the Universe
enters the dark epoch.

6 Conclusions and outlook

In this paper, we constructed a broad class of
curvaton scenarios, in which the effective mass of the
curvaton is running as a result of the coupling between
the curvaton and inflaton. The effective mass of the
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curvaton was found proportional to the inflationary po-
tential, as shown in the action (Eq. (1)). The advantages
of this mechanism are as follows: (a) the spectral index of
the curvaton only depends upon the e-folding number and
coupling coefficient; thus, a large class of inflationary
models are compatible with this mechanism. (b) Once the
curvaton has been generated by preheating, we calculate
the power spectrum and non-linear non-Gaussianity; by
neglecting the contribution of the exponential curvaton
potential, we demonstrate that these two observables are
independent of the inflationary potential. (c) After the de-
cay of the curvaton, the exponential curvaton potential
will approach a constant value of the order of the cosmo-
logical constant, which may play the role of dark energy.
Finally, we constructed a large class of curvaton scenari-
os; these are practically model-independent, only requir-
ing that the slow-roll inflationary conditions are satisfied
for the inflaton and curvaton. Using these advantages, we
systematically investigate our curvaton mechanism.

At first, only one field (i.e., the inflaton field) was
present at the very beginning of the Universe. Sub-
sequently, energy was transferred from the inflaton to the
curvaton via a preheating process. In Section 3, we
demonstrated that this production includes the back-
ground field and quantum fluctuations of the curvaton,
and that it can be divided into two cases: narrow reson-
ance and broad resonance. For narrow resonance, using
constraints from the number density of curvatons and the
decay rate of inflatons (i.e., the energy transferred from
the inflaton to curvaton), we conclude that the inflation-
ary field is large (i.e., its initial value is much larger than
its effective mass). for broad resonance, the lower bound
22023

of m?.g0d3 > was given. After generating the

curvaton, we cal(c):ulated its power spectrum and local
non-Gaussianity. Our results agree with the observation-
al constraints in Figs. 2 and 3. Remarkably, we found
these results to be independent of the inflationary poten-
tial; however, the effective mass of the curvaton was pro-
portional to the inflationary potential. This leaves extens-
ive freedom when constructing the inflationary term.
Finally, as the curvaton decay proceeds, its field value
becomes increasingly small. In Section 4, we discussed
how the exponential potential approaches a constant
Aothat is comparable to the cosmological constant. There-

Appendix A: Linearized curvaton perturbations

Here, we report a method of calculating the spectrum of
curvaton perturbations during inflation, using the simplest tree-
level (linearized) approximation. On a fixed cosmological gravita-
tional background, the curvaton dynamics are governed by Eq. (27),

which is valid provided the curvaton can be regarded as a spectator

fore, from a phenomenological perspective, this relic of
the exponential potential could play the role of the cos-
mological constant.

Here, we outline relevant future work. The curvaton
field arising from the preheating process was first invest-
igated within the framework of bounce cosmology [44].
Then, the same curvaton field was found to be induced by
the preheating process around the nonsingular bounce
[45]. These works differ from our curvaton scenario in
terms of the coupling between the inflaton and curvaton:
in our case, the y field explicitly couples to the inflation-
ary potential. Furthermore, our calculations of observ-
ables are independent of the inflationary potential. This
suggests that our curvaton mechanism can be realized
within the framework of a bounce universe. However, the
nature of the inflaton remains mysterious. As Ref. [4] de-
scribed, prior to a certain moment #;, the expectation
value of the inflationary field is zero; that is, (¢?) = 0. As
it approaches the phase transition, (¢*) becomes non-van-
ishing; thus, the interaction between y and ¢ is no longer
non-zero, which might naturally generate the curvaton
mass through symmetry breaking. Thus, we could con-
sider the inflationary field as a Higgs field, in light of the
conclusions presented in [16, 17]. In our curvaton scen-
ario, we could construct the Higgs field to power infla-
tion and the curvaton to generate curvature perturbations.
Furthermore, the one-loop correction can be considered
under the framework of finite-temperature field theory; in
particular, the effects of temperature may be observable.
In the near future, we might also use asymptotic safety to
construct the inflationary term [46]; however, we are also
interested in studying the dark matter constraint within
the framework of brane worlds [47-50].

LH is grateful to Ai-Chen Li and Hai-qing Zhang for
their fruitful discussions and comments regarding this
manuscript, and thankful for the hospitality of the Insti-
tute of Theoretical Physics in Beijing University of Tech-
nology and Beihang University when starting this project.
LH is indebted to his Ph.D supervisor, Prof. Tomislav
Prokopec, who helped with the calculations of the Ap-
pendix, and he is exceedingly thankful for the guidance
and endless discussions he received during his entire
PhD period.

field; that is, if its energy density is subdominant during inflation.
Assuming this is true, and further assuming that the curvaton per-
turbations are small, one can linearize Eq. (27) around the back-
ground field values ye(f) = (¢rYand ¢g(s) ={(¢g) such that, upon a

convenient rescaling and linearization, Eq. (27) simplifies to
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’”

(ag—vhazvg—i (@bpE) =0, (A1)
a

where e =r— (), Vi =8*Ve(ve.¢p)/0* ke, and o’ =d?a/dr?.
Because the background (Eq. (26)) is invariant under spatial trans-
lations, it is natural to assume that the state respects the same sym-
metry. Thus, we can expand §¢g(x) in terms of mode functions
XE(t.k) and x}(7,k), as follows:

Gk > >
o0 = [ S5 iy xp a0 (42

where k = ||F||; a(k) is the particle annihilation operator that annihil-
ates the vacuum |Q)(that is, a(o|Qy =0); and a*t(®) is the particle
creation operator that creates one quantum of momentum k. These
operators obey
[a(k).a* (k)] =@r)y’ 8> k—K').
a(r.k).a(t,k' )] =0,
et (k) a* (1K )] =0. (A3)

d? 1
L e
(d‘r2 72

where we have introduced the principal curvaton slow-roll para-
meter . and the secondary slow-roll parameter e, as
2 V{

Ne=—3—=, €=
3H2

€]

e (A9)

Assuming that the term that multiplies 1/7% in Eq. (A8) varies adia-
batically in time, Eq. (A8) can be solved in terms of Hankel func-
tions. The fundamental solutions are given by

pe= 2 | TTHO k. vty = L | T ED k. (AL0)
a 4 a 4

where the Wronskian normalization is

WI(T k), (1,0)] = aiz (Al1)

and the index reads

9 3 3
Vv =7 +3¢ +§r]0+61(451+462+3r]5) = v §+51

1 1
+ 57+ 36 G +4e+3nc) +0(€,1c€7). (A12)

The general mode, consistent with spatial homogeneity and iso-
tropy, is then

XE@K) = ey (T, k) + 00w (7.8), a0l - BRI =1.
A standard Bunch-Davies choice of vacuum entails that a(k) =1

and B(k) = 0, which is what we assume throughout this work.
The corresponding power spectrum and spectral index are

(A13)

defined via
K k\"e
Pyp(t,k) = ﬁL\’EF = P“*(E) ) (A14)
By applying Eqgs. (A13) and (A10) in Eq. (A14), one obtains
Pt = - E 0 gy, (A15)
XETD a® 8t 7

2+3€+4ei(e1+€) + ga +2en)7 +0(e?,m-e§>D laxE(T.k)] =0,

From (A1), the mode function yg(z,k) can be seen to satisfy the fol-
lowing differential equation:

& o 5, d
g2 T eV - —Jlaye(@h] = 0. (A4)
The last term in (A4) can be written as
" 7_{/
4 = 2 E|_qnr
;—WE(1+W§J—HE(2—61), (A5)
. 2
- (A6)
H2 H2

is the principal slow-roll parameter. The conformal Hubble para-
meter Hg can be expressed in terms of the conformal time and a
power series of slow roll parameters, as follows:

—% [l + € +€ (€ +52)+O(e[-3)] .

He = (A7)

Considering these relations and computing to second order in
slow-roll parameters, Eq. (A4) becomes

(A8)

[
We are particularly interested in super-Hubble scales, where
|kt| < 1; the Hankel functions of the first kind,

H"(~k7) =

: leiHVJV(_kT) _ l-]—v(_kT)J (larg[—kT]| < ) (A16)
sin(7rv)

can be expanded as

HO (k) =1 [—emr(—v)(i”) - zr(y)(i”)_
n 2 2

+0(|kT|V*2, \kTI’”z) . (A17)

Because v > 0, the second term of Eq. (A17) dominates and we ob-
tain the curvaton power spectrum on super-Hubble scales, as fol-

lows:
H22(v k1 ny
Py (t.h) = = ) 5 Urata@rea)l ™ 4
w[1+€ +e€(e +€)] 2Hfa
with v given in Eq. (A12), which becomes
ny =3-2v=-2€ —1nc— %61 (Ber +4e +3n.) +O(€?,m€i2), (A19)

where we have used —kr ~ k[1+ €| + € (€1 + €)]/(Hga) (see Eq. (A7)).
From Eq. (A18), we can easily read off the spectrum amplitude
Py« To linear order in the slow roll parameters, it reads

H2 2
Pype(t ko) = 5 [1-261+ 2 Qe +n0u(3/2)]

72
2HE(1—€)
ETEI)J’

where (3/2) =2-yg-2In(2) ~ 0.0367 is the di-gamma function of
3/2, and H* ~ H2e7>@N_ The amplitude P,,.can be seen to depend

xexp| —ny(N+In (A20)

weakly on time. For example, for a red-tilted spectrum in which
n, <0, Py, grows exponentially with the number of e-foldings
N =1In(a); for example, for n, ~—-0.04 and ¢ =0.01, P,,. increases
by approximately 2% per e-folding.
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