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I.  INTRODUCTION

The  detection  of  gravitational  waves  (GWs)  by
LIGO/Virgo  collaborations  [1-13]  confirmed  Einstein's
prediction based on general relativity (GR) [14, 15]. GWs
now  constitute  a  probe  into  the  nature  of  gravity  in  the
strong-field  and  high-speed  regime.  With  GWs,  several
methods have been developed to elucidate whether grav-
ity  is  described  by  GR  or  its  alternatives.  For  example,
one  may  examine  whether  a  GW waveform agrees  with
GR's  prediction  precisely;  one  could  also  count  how
many  GW  polarizations  are  detected  [16, 17].  The  GW
memory effect is probably the most intriguing phenomen-
on because of  its  intimate  relation with  asymptotic  sym-
metries.
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The  memory  effect  and  asymptotic  symmetries  have
been investigated by numerous studies in the field of GR
[18-24].  This  effect  usually  refers  to  the  permanent
change  in  the  relative  distance  between  test  particles  far
away from the  source,  approximately  at  the  null  infinity

, due  to  the  passage  of  GWs.  It  is  also  called  the  dis-
placement memory.  The  asymptotic  symmetries  are  dif-
feomorphisms preserving the geometry of  and form the
Bondi-Metzner-Sachs (BMS) group, which is a semi-dir-
ect product of an infinite dimensional commutative super-
translation group and the Lorentz group. The energy flux
of  a  GW  induces  a  transition  among  degenerate  vacua,

I

which are associated with each other by the action of su-
pertranslations.  This  explains  the  memory  effect  in  GR
[24].  In  addition,  the  spin  memory  and  center-of-mass
(CM) memory are related to the angular momentum flux
arriving at  [25, 26].
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Alternative  theories  of  gravity  also  include  the
memory effect,  as discussed in Refs. [27-33]. In particu-
lar, Ref. [34] discussed the memory effect and BMS sym-
metries  in  the  Brans-Dicke  theory  (BD)  [35]  using  the
fully  nonlinear  equations  of  motion,  as  opposed  to  the
post-Newtonian  formalism  in  Refs.  [27, 28]. It  was  dis-
covered that there are also asymptotic symmetries at  in
BD,  similar  to  those  in  GR.  Because  of  the  presence  of
the plus and cross  polarizations in  BD, the displacement
memory effect also exists in BD and is related to the en-
ergy flux  and  supertranslations.  The  breathing  polariza-
tion also causes the displacement memory; it was named
S memory  by  Du  and  Nishizawa  [29]. The  angular  mo-
mentum  flux  penetrating  and the  Lorentz  transforma-
tions  cause  the  vacuum  transitions  in  the  scalar  sector.
Utilizing a slightly different coordinate system, Ref. [36]
obtained similar results. In the present study, the asymp-
totic  symmetries  of  an  asymptotically  flat  spacetime  in
BD were analyzed again using Penrose's conformal com-
pletion method [37, 38]. This method is covariant and in-
dependent of the coordinate system used.

It is well-known that the existence of symmetries im-
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plies the existence of some conserved charges, according
to  Noether's  theorem.  Thus,  the  BMS  symmetries  on 
prompt  us  to  search  for  such  quantities  defined  on .
However,  in  general,  there  are  GWs  passing  through ;
hence,  it  is  difficult  to  obtain  them,  and  worse,  none  of
these  quantities  are  actually  conserved.  These  quantities
vary  along ,  and  the  changes  should  be  provided  by
some fluxes. All the “conserved charges” and associated
fluxes can  be  calculated  using  the  Hamiltonian  formal-
ism devised by Wald and Zoupas [39].  This  is  a  general
method applicable  to  any theory  of  gravity.  The proced-
ure  starts  by  specifying  the  phase  space  with  certain
boundary conditions, computing the presymplectic poten-
tial  current, ,  and  symplectic  current, , and  ob-
taining  the  Neother  charge  2-form, ,  associated
with  an  infinitesimal  BMS  transformation, .  Then,  to
find the “conserved charges” and fluxes on , the asymp-
totic behavior of the symplectic current is studied so that
a second presymplectic potential current, ,  on  can
be constructed, thereby setting the restriction of the sym-
plectic  current  to .  Finally,  the  flux  density  is  simply

,  and  the  variation  of  the  “conserved  charge ”  is
,  with  denoting  a

cross section of . Once a suitable reference spacetime is
chosen, the “conserved charge,” , can be obtained that
satisfies , where  is a patch in 
bounded by  and . There are also some ambiguities in
choosing , and , as well as an issue concern-
ing  the  choice  of  the  reference  spacetime,  which  have
been thoroughly discussed in Ref. [39]. In addition, Refs.
[40, 41] nicely reviewed this formalism; it is worthwhile
to read both.

ω(φ) V(ϕ)

In  previous  studies,  Noether  charges  and  currents
were  also  considered  for  black  holes  in  a  more  general
BD with a  variable  and a  generic  potential  in
both Jordan and Einstein frames [42, 43]. References [44,
45] reported that at least in GR, the BMS group is a sub-
group  of  the  so-called  conformal  Carroll  group,  whose
charges have been computed. One may also add to the ac-
tion terms that have no influence on the equations of mo-
tion,  but  that  may  lead  to  new  charges,  as  described  in
Refs. [46, 47].

In this study, we applied the Wald-Zoupas formalism
to BD, as will be described in the following sections. We
start with a brief review of the asymptotically flat space-
time  in  BD  in  Sec.  II.  Then,  the  asymptotic  structure  is
discussed again in Sec. III within the context of the con-
formal  completion  method.  Following  Refs.  [48-51],  the
radiative modes  are  identified  in  Sec.  IIIA,  and  we  de-
termine  the  infinitesimal  BMS  symmetries  in  Sec.  IIIB.
Section IV discusses the “conserved charges” and fluxes.
The presymplectic  potential  current  and  symplectic  cur-
rent  are  computed  and  analyzed  in  Sec.  IVA.  Based  on
these  computations,  the  fluxes  and charges  are  obtained,
as  presented  in  the  following  two  subsections:  IVB  and

c = 1

IVC. Finally,  the  flux-balance  laws  are  applied  to  con-
strain the displacement memory (Sec. VA), spin memory
(Sec. VB),  and  CM  memory  (Sec.  VC)  in  Sec.  V.  Sec-
tion VI presents a short summary. Some technical details
have been relegated to Appendices A and B. The abstract
index notation is used [52], and the speed of light is set to

 in vacuum.

II.  BRANS-DICKE THEORY

In  this  section,  we  review  the  asymptotically  flat
spacetime in the BD based on Ref. [34]. It is well known
that the action of the BD is expressed as follows [35]:

S =
1

16πG0

∫
dx4 √−g

(
φR− ω

φ
∇aφ∇aφ

)
, (1)

ω G0where  is  a  constant,  is the  bare  gravitational  con-
stant, and the matter action is ignored. Some phenomeno-
logical  aspects  have  been  summarized  in  Ref.  [34].  The
variational principle gives rise to the following equations
of motion:

Rab−
1
2

gabR =
8πG0

φ
Tab, (2a)

∇a∇aφ = 0, (2b)

Tab φin  which  is  the  effective  stress-energy  tensor  for ,
given by

Tab =
1

8πG0

[
ω

φ

(
∇aφ∇bφ−

1
2

gab∇cφ∇cφ

)
+∇a∇bφ−gab∇c∇cφ

]
. (3)

Equation (1) is said to be written in Jordan frame.

φ = φ0+O
(
r−1

)
g̃ab =

φ

φ0
gab

φ

φ0
= eφ̃

From  a  previous  study  [34],  it  is  known  that
 in an asymptotically flat spacetime. Con-

sequently, the following conformal transformation can be
applied, , and set ; then, the action be-
comes [53]

S =
1

16πG̃

∫ √
−g̃

(
R̃− 2ω+3

2
∇̃aφ̃∇̃aφ̃

)
, (4)

G̃ =G0/φ0where .  This  action  is  written  in  Einstein
frame. The equations of motion are given by

R̃ab−
1
2

g̃abR̃ = 8πG0T̃ab, (5a)

∇̃a∇̃aφ̃ = 0, (5b)

with
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T̃ab =
2ω+3
16πG0

(
∇̃aφ̃∇̃bφ̃−

1
2

g̃ab∇̃cφ̃∇̃cφ̃

)
. (6)

φ̃In Einstein frame,  is proportional to a canonical scalar
field.

(u,r, x2 =

θ, x3 = ϕ)

As discussed in Ref. [34], Eqs. (2) can be solved us-
ing  the  generalized  Bondi-Sachs  coordinates 

 [54],

ds2 =e2βV
r

du2−2e2βdudr+hAB(dxA

−UAdu)(dxB−UBdu), (7)

A,B = 2,3 β,V,UA hABwith ; ,  and  are six  arbitrary  func-
tions. Moreover,  certain  boundary  conditions  are  im-
posed [54]:

β =O
(
r−1

)
, V = −r+O

(
r0

)
,

UA =O
(
r−2

)
, (8)

along with the determinant condition

det(hAB) = r4
(
φ0

φ

)2

sin2 θ. (9)

1/rThen, the series expansions in powers of 

φ = φ0+
φ1

r
+
φ2

r2 +O
(

1
r3

)
, (10a)

guu = −1+
2m+φ1/φ0

r
+O

(
1
r2

)
, (10b)

gur =−1+
φ1

φ0r
+

1
r2

 1
16

ĉB
AĉA

B+
2ω−5

8

(
φ1

φ0

)2

+
φ2

φ0

]
+O

(
1
r3

)
, (10c)

guA =
DBĉB

A

2
+

2
3r

[
NA+

1
4

ĉABDC ĉBC

− φ1

12φ0
DBĉB

A

]
+O

(
1
r2

)
, (10d)

gAB =r2γAB+ r
(
ĉAB−γAB

φ1

φ0

)
+ d̂AB

+γAB

1
4

ĉD
C ĉC

D+
φ2

1

φ2
0

− φ2

φ0

+O(
1
r

)
. (10e)

γAB DA
φ1, φ2, ĉAB d̂AB

(u, xA) ĉAB d̂AB γAB

γABĉAB = γ
ABd̂AB = 0 NA (u, xA)

NA

Here,  is the metric on a unit 2-sphere, and  is its
compatible  covariant  derivative; ,  and  are
expansion  coefficients,  which  are  arbitrary  functions  of

. The indices of  and  are raised by , and
.  Functions m and  of  are

called the Bondi mass aspect and the angular momentum
aspect,  respectively.  Einstein's  equation (2a)  leads  to  the
following evolutions of m and :

ṁ = −1
4
DADBNAB− 1

8
NABNAB− 2ω+3

4

(
N
φ0

)2

,

(11a)

ṄA =DAm+
1
4

(DBDADC ĉBC −DBDBDC ĉC
A)

− 1
16
DA(NB

C ĉC
B)+

1
4

NB
CDAĉC

B +
1
4
DB(NC

A ĉB
C

− ĉC
A NB

C )+
2ω+3

8φ2
0

(φ1DAN −3NDAφ1),

(11b)

NAB = −∂ĉAB/∂u
N = ∂φ1/∂u φ
where  is  the  news  tensor,  and

.  Finally,  the  equation  of  motion  (2b)  for 
gives

φ̇2 =
φ1N
φ0
− 1

2
D2φ1, (11c)

D2 =DADAwith .

ξa α(xA) YA(xB)

α
YA

As  in  GR,  the  asymptotically  flat  spacetime  in  BD
also  exhibits  BMS  symmetries.  An  infinitesimal  BMS
transformation, , is parameterized by  and 
defined on  the  unit  2-sphere.  The  transformation  gener-
ated by  is called a supertranslation, and the one gener-
ated by  is a Lorentz transformation. The action on the
solution space can be easily computed, for instance, giv-
en by [34]

δξφ1 = f N +
ψ

2
φ1+YADAφ1, (12a)

δξ ĉAB = − f NAB−2DADB f +γABD2 f +LY ĉAB−
ψ

2
ĉAB,

(12b)

and thus,

δξNAB = f ṄAB+LY NAB, (12c)

δξN = f Ṅ +ψN +YADAN, (12d)

ψ =DAYAwhere . With these expressions, it is possible to
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discuss the relation between BMS symmetries and gravit-
ational  memories.  It  turns  out  that  the  displacement
memory  effect  in  the  tensor  sector  is  caused  by  the  null
energy  fluxes,  including  that  of  scalar  field  passing
through ,  which  is  similar  to  the  one  in  GR.  This
memory  effect  is  associated  with  the  supertranslation
transformation,  which  induces  the  transition  among  the
vacua in the tensor sector. The scalar sector also contains
degenerate vacua;  hence,  the  displacement  memory  oc-
curs in the scalar sector as well. This is caused by the pas-
sage  of  the  angular  momentum  fluxes  through ,  and  a
Lorentz  transformation  induces  the  transition  among  the
vacua. The spin memory and the CM memory effects are
also  of  interest  in  GR  [25, 26];  they  exist  in  the  tensor
sector as well. However, neither of them is present in the
scalar sector.

In  Ref.  [34],  we  did  not  calculate  the  “conserved
charges” of  the asymptotically flat  spacetime in the BD.
In the present study, we computed them using the covari-
ant  phase space formulism devised by Wald and Zoupas
[39].  For  that  purpose,  we  started  with  the  asymptotic
structure of BD, which will be described in the next sec-
tion.

III.  ASYMPTOTIC STRUCTURE AT
NULL INFINITY

I
I

The  asymptotic  structure  of  spacetimes  in  GR  has
been  discussed  and  summarized  in  Refs.  [48, 50-52].  In
this  section,  we  follow  these  approaches  to  study  the
asymptotic structure at  in BD. In particular, we utilize
the  conformal  completion,  which  brings  to  a  finite
place.

I
(M,gab)

I
(M′,g′ab)

C : M→C[M] ⊂ M′

The asymptotically flat  spacetime at  in BD can be
defined in the following way. A spacetime  is said
to  be  asymptotically  flat  at  in vacuum  BD,  if  an  un-
physical spacetime  and a conformal transforma-
tion  exist such that

g′ab = Ω
2C∗gab C[M]

Ω C∗
1.  in ,  for  some conformal factor

, where  is the pullback;
I M′ Ω = 0

∇′aΩ , 0
2.  is the boundary of M in , and, on it,  and

;
I S2×R3. the topology of  is ;

I4. equations (2) are satisfied near .

I
φ

φ̃

(M,gab) (M′,g′ab)
(M̄, ḡab) ḡab = Ω

2g̃ab

With  this  definition,  we  can  elucidate  the  asymptotic
structure  at  for BD.  However,  Eqs.  (2)  are  very  com-
plicated because  is  not a canonical scalar field; hence,
the  discussion  in  Jordan  frame  would  be  very  involved.
Therefore,  it  is  preferable  to  work  in  Einstein  frame,
where the equations of motion (5) are simpler, and  is a
canonical scalar field modulo a factor. We are allowed to
do  the  conformal  completion  in  Einstein  frame,  because
under  the  above  conformal  transformation  relating

 to ,  another  unphysical  spacetime
 can  be  found  with .  As  a  matter  of

ḡab =
φ

φ0
g′ab I

M̄ S2×R
Ω = 0 ∇̄aΩ , 0 ∇̄a = ∇′a = ∂a

I

fact, .  In this  spacetime,  is still  the bound-

ary of M in  with the topology being , and, on it,
 and ,  given  that  for  a  scalar

field.  However,  instead  of  Eqs.  (2),  Eqs.  (5)  must  now
hold near .

In  the  following,  we  will  first  identify  the  radiative
modes in BD and then discuss the asymptotic symmetries.

A.    Radiative modes

φ̃ φ̃ = Ωφ̄

Consequently,  in  Einstein  frame,  we  can  effectively
perform the conformal completion for GR with a canon-
ical scalar field. Many results obtained in GR can be car-
ried over directly. For example, the conformal transform-
ation of  is  [48].  Then,  Einstein's  equation (5a)
becomes [48, 52]

ΩS̄ ab+2∇̄an̄b− f̄ ḡab = Ω
−1L̄ab, (13)

S̄ ab = R̄ab− ḡabR̄/6 ḡab

n̄a = ∇̄aΩ f̄ = n̄an̄a/Ω L̄ab

where  is  the  Schouten  tensor  for ,
, , and  is given by

L̄ab =
2ω+3

2
Ω2

(
T̄ab−

1
6

ḡabT̄
)
, (14)

T̄ab = φ̄
2n̄an̄b+2Ωφ̄n̄(a∇̄b)φ̄+Ω

2∇̄aφ̄∇̄bφ̄

T̄ = ḡabT̄ab n̄a

ḡab n̄a = ḡabn̄b

with ,  and
.  Here  and  below,  the  index  of  will  be

raised by , i.e., . The scalar equation (5b) is

Ω∇̄a∇̄aφ̄+ φ̄∇̄an̄a−2 f̄ φ̄ = 0. (15)

Ω−1 I L̄ab

n̄an̄a = 0 I

Although the right  hand side of  Eq.  (13)  carries  a  factor
of ,  it  is  vanishing on  because  vanishes  faster
according to Eq. (14).  The finiteness of Eq. (13) implies
that , i.e.,  is null, as expected.

Ω′ =ϖΩ ϖ > 0
In addition, the conformal factor can be freely chosen.

A new conformal factor, , with , is as good
as  the  old  one.  Under  this  type  of  gauge transformation,
one can calculate that

ḡ′ab =ϖ
2ḡab, φ̄′ =ϖ−1φ̄, (16a)

n̄′a =ϖn̄a+Ω∇̄aϖ, (16b)

f̄ ′ =ϖ−1 f̄ +2ϖ−2n̄a∇̄aϖ+ϖ
−3Ω(∇̄aϖ)∇̄aϖ. (16c)

f̄ ′=̈0
∇̄′an̄′b=̈0

=̈ I

A gauge  may  be  chosen  such  that , which  also  im-
plies  that  according to Eqs.  (13) and (14).  Here,
the  symbol means to evaluate the equation on . This
gauge  is  also  called  the Bondi  gauge by  analogy  [52].
Next, we will fix such a gauge condition and drop all the
prime symbols, i.e.,
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f̄ =̈0, ∇̄an̄b=̈0. (17)

I
n̄a

f̄ = Ωϑ ϑ M̄
n̄an̄a = Ω2ϑ

These conditions imply that, on , the integral curves of
 are the affinely parameterized null  geodesics,  and the

null  congruence is  free  of  expansion,  shear,  and rotation
[55]. The first expression in the above equation can be re-
written  as  for  some  function  on ;  hence,

. The second expression in Eq. (17) is equival-
ent to

Ln̄ḡab=̈0, (18)

n̄a I

Ln̄ϖ=̈0

that  is,  is  a  null  Killing  vector  field  on .  A  further
gauge transformation would maintain the Bondi gauge as
long as .

I
ḡab n̄a

M̄
I γab

ḡab I n̄a I
I

I (γab, n̄a)
I

γabn̄b ḡabn̄b = ∇̄aΩ I
γabn̄b = 0 γab

I

According to the above discussion, the structure of 
is  characterized  by  and  at  the  “zeroth  order ”.
However,  these  are  spacetime  quantities  defined  on .
One may prefer the intrinsic ones to ; hence, let  be
the  restriction  of  to .  Note  that  is  tangent  to ;
therefore,  it  is  naturally  intrinsic  to .  Then,  following
the terminology of Ref. [51], the zeroth-order structure of

 is the pair . This structure is universal, i.e., it is
shared  by  any  asymptotically  flat  spacetime  at  [48].
Given  that  is  the  restriction  of  to ,

;  hence,  is  degenerate.  This  is  consistent
with the fact that  is null.

Da

I ∇̄a

The  first-order  structure  is  covariant  derivative ,
induced on  by  [51]. It satisfies

Daγbc = 0, Dan̄b = 0. (19)

Da Rabc
d

Da νa

I

Some of the higher-order structures require the following
quantities  from .  The  curvature  tensor, ,  can  be
defined for  as  follows.  Let  be a covector field on

; then, one obtains

D[aDb]νc =
1
2
Rabc

dνd. (20)

Rabcd = γdeRabc
e Rab = γ

cdRacbd

R = γabRab γab γab

γacγbdγ
cd = γab

Rabc
d

Sa
b

Define ;  then, ,  and
.  Here,  is  “inverse ”  to  such  that

.  By counting the number of  algebraically
independent  components  of ,  one  may  prove  that
there is a tensor field , which satisfies [49]

Sb
an̄b = (Sb

b−R)n̄a, (21)

such that

Rabc
d = γc[aSb]

d +Sc[aδb]
d, (22)

Sab = γbcSa
c Rabc

dwith .  Thus,  can be  equivalently  rep-

Sa
b Sa

b

S̄ a
b I

resented by . In fact,  is nothing but the restriction
of  to .

I
ρab I

Owing  to  the  topology  of ,  there  exists  a  unique
symmetric tensor field  on  with the following prop-
erties [48]:

ρabn̄b = 0, γabρab = R, D[aρb]c = 0. (23)

Nab

We  can  now  introduce  the  second-order  structure,  i.e.,
news tensor , defined by

Nab = Sab−ρab. (24)

Nabn̄b = 0
γabNab = 0

φ̄ I N̄ ≡ Ln̄φ̄ = N/φ0
n̄a

I N̄
I

It  is  transverse,  i.e.,  and  traceless,  i.e.,
. Its  nonvanishing  nature  indicates  the  pres-

ence of the tensor GW [34]. There also exists scalar field
 on .  Its Lie-drag, ,  along the integral

curves of  signals the existence of the scalar GW penet-
rating ;  hence,  (or,  equivalently N)  also  belongs  to
the second-order structure of .

Finally,  the  third-order  structure  can  be  introduced.
According to [52],

R̄abcd = C̄abcd + ḡa[cS̄ d]b− ḡb[cS̄ d]a. (25)

S̄ ab
C̄abcd

L̄ab O
(
Ω2

)
I C̄abcd I

In the above, we have observed the roles that  plays in
the  asymptotic  structure.  Now,  consider .  Although

 is  near ,  still vanishes on  according
to Ref. [48]. Thus, the following two quantities are intro-
duced:

Kab = −4Ω−1C̄acbdn̄cn̄d,
∗Kab = −4Ω−1∗C̄acbdn̄cn̄d, (26)

∗C̄acbd Kabn̄b =
∗Kabn̄b = 0 I

γabKab = γab
∗Kab = 0

where  is the Hodge dual [52]. Given that 
,  they  are  naturally  intrinsic  to .  They  are

symmetric  and  traceless,  i.e., .  They
are also dual to each other in the following sense:

γacKcb = −ϵ̄acdn̄d∗Kcb, γac
∗Kcb = ϵ̄acdn̄dKcb, (27)

ϵ̄abc I
ϵ̄abcd(= 4ϵ̄[abcn̄d])
where  is  the  volume  element  on ,  induced  from

. Following the argument in Ref.  [48],  it
can be shown that

D[aSb]
c =

1
4
ϵ̄abd

∗Kdc, (28a)

DbKab =
2(2ω+3)

3

[
φ̄Ln̄N̄ −2N̄2

]
n̄a, (28b)

Db
∗Kab = 0. (28c)
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∗Kab I is the third-order structure on .
The gauge transformations of the above structures are

given by [50]

γ′ab =ϖ
2γab, n̄′a =ϖ−1n̄a, (29a)

D′aνb =Daνb−2ϖ−1ν(aDb)ϖ+ϖ
−1γabϖ

cνc, (29b)

N′ab = Nab, N̄′ =ϖ−2N̄, (29c)

K′ab =ϖ−5Kab, ∗K′ab =ϖ−5∗Kab, (29d)

ϖa ∇̄aϖ I
ϖ = 1 I

Da

where  is the restriction of  to . Now, consider a
special gauge transformation with  on . Then, the
first-order structure, , changes according to

D′aνb =Daνb+ κγabn̄cνc, (30)

∇̄aϖ=̈κn̄a κ I

(γ′ab, n̄
′a) =

(γab, n̄a) D′a Da

{Da}

{Da}
ḡab ḡ′ab

M̄ ∇̄a ∇̄′a
{Da} {D′a}

∇̄a

∇̄′a
σab σabn̄b = 0

γabσab = 0 ℓa

I n̄aℓa = 1 σab

where  for a function  on , but the remaining
structures  stay  the  same.  Therefore,  although the  zeroth-
order  structure  does  not  change,  i.e., 

,  covariant  derivatives  and  can be differ-
ent.  This  suggests  the  introduction  of  the  concept  of  an
equivalence class , which is  the set  of  covariant  de-
rivatives associated with each other via Eq. (30) [49]. The
radiative  degrees  of  freedom are  encoded in .  Now,
let  and  be two metric fields in unphysical space-
time , and their covariant derivatives be  and , re-
spectively.  Further,  let  and  be two  equival-
ence classes of the induced covariant derivatives from 
and , respectively. Their difference is completely char-
acterized by a symmetric tensor field  with 
and . If one introduces a covector field, ,  on

 such that , it can be shown that  is the trace-
less part of the following tensor [49]:

Σab = (D′a−Da)ℓb, (31)

D′a Da {D′a}
{Da} σab

νb ℓb

n̄b

where  and  are  two  representatives  of  and
, respectively. One can easily verify that  has two

independent components,  and  they  represent  the  radiat-
ive degrees of freedom in the tensor sector. In fact, by re-
placing  with , substituting Eq. (22) into Eq. (20), and
contracting both sides of the result by , the following is
obtained:

Nab = −2Ln̄σab. (32)

D̊a

D̊aℓb = 0 Σab = (Da−D̊a)ℓb =Daℓb

Here, to derive this relation, a trivial derivative, , with
, is applied, setting .  In

σab

ℓa = ḡabℓb I
this sense,  is the shear of a null congruence with tan-
gent vector fields  on .

Ω = 1/r {u,Ω, θ,ϕ}

The metric solution presented in the previous section
is actually in the Bondi gauge. To demonstrate this, first,
the  solution  is  transformed to  the  one  in  Einstein  frame,
and  then,  a  conformal  transformation  is  performed  with

. In the coordinates , the metric is

ds̄2 =
[
−Ω2+2Ω3m+O

(
Ω4

)]
du2+2

[
1+O

(
Ω2

)]
dudΩ

+
[
Ω2DBĉB

A+O
(
Ω3

)]
dudxA+

[
γAB+ΩĉAB

+Ω2
(
d̂AB+

φ1

φ0
ĉAB+

γAB

4
ĉD

C ĉC
D

)
+O

(
Ω3

)]
dxAdxB,

(33)

and the scalar field is

φ̄ =
φ1

φ0
+Ω

φ2

φ0
−
φ2

1

2φ2
0

+O (
Ω2

)
. (34)

n̄a = ∇̄aΩ

n̄a = (∂u)a ℓa = (du)a+O (Ω)
σAB = ĉAB/2 NAB = −∂uĉAB

With  Eq.  (33),  one  can  verify  the  validity  of  the  Bondi
gauge  condition  (17).  Note  also  that ;  hence,

. Finally, by setting , we obtain
 and .

B.    BMS generators

ξa g̃ab

As discussed in Ref. [56], an infinitesimal asymptotic
symmetry, , induces the following variation in :

Ω2δξg̃ab =Ω
2Lξg̃ab

=Lξḡab−2K̄ḡab = 2ΩX̄ab, (35)

K̄ = ξan̄a/Ω

X̄ab M̄
ξan̄a=̈0 ξa I

for  a  smooth  scalar  field  [57]  and  a  smooth
tensor field  in . The well-posedness of this expres-
sion requires that  for  to be tangent to .  This
equation can be rewritten as

Lξḡab = 2(K̄ḡab+ΩX̄ab). (36)

(LξLn̄−Ln̄Lξ −L[ξ,n̄])ḡab = 0By examining  with the con-
formal Einstein's equation (13), the following is obtained:

−∇̄a∇̄bK̄ +4n̄(aX̄b)+2Ω∇̄(aX̄b)− ḡabn̄cX̄c

− 1
2
Lξ(S̄ ab−Ω−2L̄ab)−Ln̄X̄ab = 0, (37)

X̄a = Ω
−1X̄abn̄b X̄ = ḡabX̄ab

X̄ab

n̄a X̄a I ξa

n̄a

where  and .  Again,  the  well-
posedness  of  Eq.  (37)  leads  to  the  fact  that  is trans-
verse to  so that  is finite on . The action of  on

 can be easily calculated as
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Lξn̄a = −K̄n̄a+Ω∇̄aK̄ −2Ω2X̄a. (38)

n̄aContracting both sides by  gives

Ln̄K̄ =
1
2

(Lξ f̄ − K̄ f̄ ), (39)

ξa φ̄ δξφ̃ =
Lξφ̃ = Ω(Lξφ̄+ K̄φ̄)

φ̃ 1/r ∼Ω

without imposing the Bondi gauge condition. What about
the  action  of  on ?  First,  one  can  perform 

.  Second,  according  to  the  definition
of the asymptotic symmetry in Ref. [34], the transformed
“physical”   is  allowed to  decay as .  Therefore,
we have that

δξφ̄ =Lξφ̄+ K̄φ̄, (40)

φ1 φ̄=̈φ1/φ0

which actually agrees with the transformation property of
 in Ref. [34]. Indeed, .

ḡab
n̄a M̄

I

Now, we know how a BMS generator acts on  and
 in unphysical spacetime  according to Eqs. (36) and

(38). By restricting these equations to , we obtain [48]

Lξγab = 2K̄γab, Lξn̄a = −K̄n̄a. (41)

LξK̄ = 0 I
ξa I

Eq.  (39)  implies  that  on  in  the  Bondi  gauge.
Therefore,  is  a  conformal  Killing  vector  field  on .
Among the  BMS  generators,  there  are  infinitesimal  su-
pertranslations given by [56]

ξa = αn̄a−Ω∇̄aα+Ω2ua, (42)

α ua

M̄ α Ln̄α = Ωςα
ςα M̄

where  is a smooth function, and  is a smooth vector
field  on .  Moreover,  should  satisfy  for
some smooth function  on . One can show that

K̄ = Ω(αϑ−ςα+ϱ), (43a)

X̄ab =−∇̄a∇̄bα−
1
2

(αϑ−2ςα+2ϱ)ḡab

− α
2

(S̄ ab−Ω−2L̄ab)+2n̄(aub)+Ω∇̄(aub), (43b)

X̄a =
1
2
∇̄a(αϑ−2ςα+ϱ)− 1

2
(S̄ ab−Ω−2L̄ab)∇̄bα

+
1
2

n̄b∇̄bua+
Ω

4
[3ϑua+ (S̄ ab−Ω−2L̄ab)ub], (43c)

X̄ =−∇̄2α−2(αϑ−2ςα+ϱ)−α
(

R̄
3
−Ω−2L̄

)
+Ω∇̄aua, (43d)

ϱ = uan̄a ua = ḡabub I ξa=̈αn̄a Ln̄α=̈0where  and . On ,  and .

K̄=̈0 αn̄aGiven that ,  is a Killing vector field.
ξa

I
For  a  generic  BMS generator , let  us  directly  con-

sider its  restriction to . It  satisfies the following condi-
tions [48]:

n̄aξa = 0,

D(aξb) = K̄γab,

Ln̄ξa = 0, (44)

ξa = ḡabξ
b ξa

I
ξa

ξa

ξa = γabξ
b γab ξa

αn̄a ξa ξa ξ′a

I

with . The first expression is because  is tan-
gent  to .  The  second  and  third  are  basically  Eqs.  (41).
Conversely, if a covector field, , satisfies Eqs. (44), one
can find a BMS generator, , that satisfies Eqs. (41) and

.  Owing  to  the  degeneracy  of ,  is  not
unique;  one  can  add  to  it  an  arbitrary  supertranslation
generator  without  modifying .  If  and  are
deemed equivalent, as long as they only differ by a super-
translation, the  solutions  to  Eqs.  (44)  belong  to  an  equi-
valence class. The set of such equivalence classes is iso-
morphic to the Lorentz algebra owing to the topology of

.  Given  that  this  set  is  also  the  quotient  algebra  of  the
BMS  algebra  modulo  the  supertranslation  algebra,  one
verifies  that  the  BMS algebra  is,  indeed,  the  semi-direct
sum of  the  supertranslation  algebra  and  the  Lorentz  al-
gebra.

I ξa

C0

u0

n̄a C
C ℓa ξa

Once  a  foliation  of  is  chosen,  can  be  uniquely
decomposed.  This  foliation  can  be  obtained  by  starting
with a reference leaf , a cross section, at some retarded
time  and then Lie-dragging it along the integral curves
of  to an arbitrary . One can further let the normal to

 be ; then,  is decomposed according to

ξa=̈

(
α+

u
2
D·Y

)
n̄a+Ya, (45)

D·Y = γabDaYb = 2K̄ I Ya

C
C αn̄a

α LYγab = 2K̄γab

LY n̄a = 0 Ya

Ya

where  on . Here, component  is
tangent  to , generating  the  infinitesimal  Lorentz  trans-
formation and leaving  invariant, but , i.e., an infin-
itesimal  supertranslation,  induces  a  one-parameter  group
of diffeomorphisms that changes the foliation for a gener-
al .  It  can  be  demonstrated  that  but

, which means that  itself is not a BMS gener-
ator.  This  explains  the presence of  the term proportional
to u, which, along with , is a genuine BMS generator.

Da

ξa νa

One should also know how a BMS generator transforms
 to calculate the flux and the “conserved charge”. To

this end, it should first be noted that for any  and ,

(LξDa−DaLξ)νb = (ξdRdab
c−DaDbξ

c)νc. (46)

ξa=̈αn̄aConsequently,  for  a  supertranslation , the  fol-
lowing useful result can be obtained:
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δαn̄Σab =(Lαn̄Da−DaLαn̄)ℓb

=−DaDbα−
α

2
Nab+ κ

′γab, (47)

κ′ I

Da

where Eq. (22) has been used, and  is  a function on 
that  is  irrelevant  for  the  coming  discussion.  Then,  the
Lorentz  transformation  also  transforms  as  follows
[58]:

δYΣab =(LξDa−DaLξ)ℓb

=− u
2
DaDb(D·Y)− 1

2
σabD·Y

+LYσab−
u
4

(D·Y)Nab− ℓ(aDb)(D·Y)

+
1
4
γabℓD·Y +

1
2
γabYcDcℓ, (48)

ℓ = γabDaℓb

δαn̄σab δYσab ξa

ḡab

Γ̄c
ab

where .  The  traceless  parts  of  Eqs.  (47)  and
(48) are  and , respectively. In the end,  in-
duces the variation of  according to Eq. (36); hence, its
connection, , also changes, which is given by

(Lξ∇̄a−∇̄aLξ)νb =− νcδξΓ̄
c
ab = νc[n̄cX̄ab−2n̄(aX̄b)

c

−2δc
(a∇̄b)K̄ + ḡab∇̄cK̄ +O (Ω)]. (49)

I νa = ℓaNow, take the restriction to , and set , thereby ob-
taining

X̄ab = (LξDa−DaLξ)ℓb+2ℓ(aDb)K̄ −γabℓc∇̄cK̄, (50)

∇̄c Dawhere  is not replaced by  in the last term, because
this term is useless in the following calculation.

IV.  “CONSERVED CHARGES” AND FLUXES

A.    (Pre)symplectic currents
Following Ref. [39], we can start with the variation of

the action described by Eq. (1),

δS =
1

16πG0

∫
d4 √−g(Eabδgab+Eφδφ)

+

∫
d4x
√−g∇aθ

a, (51)

Eab

Eφ = R+
2ω
φ
∇a∇aφ− ω

φ2∇aφ∇aφ

θa

where  is  Einstein's  equation,  which takes a different
form  to  that  of  Eq.  (2a)  but  is  equivalent,  and 

.  The  last  term  above  is  a  surface

term,  where ,  or  its  Hodge  dual,  is  the  so-called
presymplectic potential current, given by

θabc(δg, δφ) =
1

16πG0
ϵdabc

[
φgdeg f h(∇ f δgeh−∇eδg f h)

+gdeg f h(δg f h∇eφ−δgeh∇ fφ)− 2ω
φ
δφ∇dφ

]
.

(52)

θabcWith , the symplectic current is given by

ωabc =δθabc(δ′g, δ′φ)−δ′θabc(δg, δφ)

=
1

16πG0
ϵdabcφwd +

1
16πG0

ϵdabc

×
[
2gd[eg f ]h(δφ∇ f δ

′geh−δ′geh∇ f δφ)

+ (gdpgeqg f h+gdeg f pgqh)δgpqδ
′geh∇ fφ

+
1
2

g f hδ′g f hδgde∇eφ−
2ω
φ
δ′φ

(
δgde∇eφ+∇dδφ

+
1
2

ge f δge f δ
′φ∇dφ

)
−⟨δ↔ δ′⟩

]
, (53)

⟨δ↔ δ′⟩
δ δ′

wa

where  represents the  terms  obtained  by  switch-
ing  and  within  the  remaining  terms  in  the  square
brackets, and  has been calculated in Ref. [39] for GR,
i.e,

wa =(ga[egd]cgb f +gaegb[ f gc]d +ga[dgb]cge f )
× (δ′gbc∇dδge f −δgbc∇dδ

′ge f ). (54)

However,  the  above  results  were  computed  in  Jordan
frame, where  Eqs.  (2)  are  complicated,  and  the  calcula-
tion of the “conserved charges” and fluxes is very likely
to be involved.

To  resolve  the  complication,  all  quantities  in  Eqs.
(52)  and  (53)  should  be  replaced  by  the  corresponding
ones  in  Einstein  frame.  One  may  also  directly  calculate
the  presymplectic  potential  current  and  the  symplectic
current  using  the  action  described  in  Eq.  (4)  in  Einstein
frame, which are

θ̃abc =
1

16πG̃
ϵ̃dabc[g̃deg̃ f h(∇̃ f δg̃eh−∇̃eδg̃ f h)

− (2ω+3)δφ̃∇̃dφ̃], (55a)

ω̃abc =
1

16πG̃
ϵ̃dabcw̃d − 2ω+3

16πG̃
ϵ̃dabc

[
δ′φ̃∇̃dδφ̃

+δ′φ̃δg̃de∇̃eφ̃+
1
2

g̃e f δg̃e f δ
′φ̃∇̃dφ̃−⟨δ↔ δ′⟩

]
,

(55b)

w̃a wa

∇ g̃ ∇̃
where  takes similar  forms to  in Eq.  (54),  with all
g's and 's replaced by  and , respectively. However, a
careful  examination  reveals  that  these  two methods  give
distinct presymplectic potential currents,
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θabc(δg, δφ) = θ̃abc(δg̃, δφ̃)+∆abc, (56a)

∆abc ≡
3

16πG̃
ϵ̃dabc

(
δg̃de∇̃eφ̃+

1
2

g̃e f δg̃e f ∇̃dφ̃+ ∇̃dδφ̃

)
.

(56b)

ωabc(δg, δφ) = ω̃abc(δg̃, δφ̃) ∆abc

∇̃[a∆bcd] = 0

Nevertheless,  the  symplectic  currents  are  the  same,  i.e.,
.  Although  is nonvanish-

ing  in  general,  it  is  closed,  i.e., ,  if  Eqs.  (5)
and  their  linear  perturbations  are  satisfied.  Indeed,  the
following can be obtained:

ϵ̃abcd∇̃a∆bcd =
9

8πG̃

[1
2

g̃abδg̃ab∇̃2φ̃+
(
δg̃ab∇̃a∇̃bφ̃

+ ∇̃aδg̃ab∇̃bφ̃+
1
2

g̃ab∇̃cδg̃ab∇̃cφ̃+ ∇̃2δφ̃
)]
,

(57)

∆abc = 3∇̃[aYbc]

Yab

g̃ab, φ̃

θabc

∆abc

where the  terms  in  the  round  brackets  represent  the  lin-
earized  scalar  field  equation.  Therefore, 
locally  for  some  2-form ,  locally  constructed  out  of

,  and  their  variations  [59].  According  to  Ref.  [39],
there is always an ambiguity in choosing . Given that
we  work  in  Einstein  frame,  we  ignore  the  difference,

.

Σ

ΞΣ

Now, let us choose an arbitrary, closed, embedded 3-
dimensional  hypersurface, ,  without  boundary.  The
presymplectic form, , is  given by the following integ-
ral:

ΞΣ(δg̃, δφ̃;δ′g̃, δ′φ̃) =
∫
Σ

ω̃abc(δg̃, δφ̃;δ′g̃, δ′φ̃). (58)

δ′g̃ab δ′φ̃
ξa δ′g̃ab =Lξg̃ab δ′φ̃ =Lξφ̃

g̃ab

φ̃

δg̃ab δφ̃

Qξ ξa

Let  us  suppose  now that  and  are  induced by a
vector field , i.e.,  and . Further-
more,  if  the  equations  of  motion  (5)  are  satisfied  by 
and , and the linearized equations of motion are also sat-
isfied by  and , then the above integral defines the
variation of a Hamiltonian, or a charge , conjugate to ,

̸δQξ[Σ] =
∫
Σ

ω̃abc(δg̃, δφ̃;Lξg̃,Lξφ̃). (59)

∂Σ

The integral  above can be rewritten as the one over a 2-
dimensional surface  [39],

̸δQξ[∂Σ] =
∫
∂Σ

[δQ̃ab− ξcθ̃cab(δg̃, δφ̃)], (60)

̸δQξ ∂Σ

Σ

Q̃ab

and, therefore, we now take  as a function of , in-
stead of . In the above expression, the Noether charge 2-
form, , is

Q̃ab = −
1

16πG̃
ϵ̃abcd∇̃cξd, (61)

̸δ Qξ

Qξ Σ (δg̃ab, δφ̃) (δ′g̃ab, δ
′φ̃)

which  takes  exactly  the  same  form  as  that  in  GR  [60].
Here,  the  symbol  means  that  a  function  might  not
exist. The sufficient and necessary condition for the exist-
ence of  on  is  that,  for  all  and 
satisfying the linearized equations of motion [39],∫

∂Σ

ξcω̃cab(δg̃, δφ̃;δ′g̃, δ′φ̃) = 0. (62)

∂Σ
I

Qξ ξa

θ̃abc, ω̃abc Q̃ab I

When this condition is violated, for example, when  is
a cross section of , there is a prescription to find a “con-
served  charge ”   conjugate  to , which  will  be  dis-
cussed in the next two subsections. Before that, the beha-
viors of , and  must be analyzed near .

I
I

I
I

δg̃ab δφ̃

δΩ = 0 I

ḡab I

Equations  (55)  and (61)  are  the  most  important  ones
for calculating the “conserved charges” at .  Given that

 in  the  physical  spacetime  is  not  at  a  finite  place,  it  is
probable that these equations blow up at . Thus, it is ne-
cessary to check whether they are finite at  or not and to
know the behaviors of  and . For that purpose, the
field  variation  should  not  change  the  conformal  factor,
i.e., . Simultaneously,  is a universal structure for
any asymptotically flat spacetime [48]. Consequently, the
unphysical metric, , should remain the same at ,

δḡab = Ω
2δg̃ab=̈0, (63)

τabwhich  implies  that  a  smooth  tensor  field  exists  such
that

δḡab = Ωτab, δg̃ab = Ω
−1τab. (64)

τab=̈2δΣab

δḡab
τa

By applying  a  method  similar  to  the  one  applied  to  ob-
tain  Eq.  (50),  it  can  be  shown  that . As  dis-
cussed  in  Sec.  III,  the  Bondi  gauge  condition  described
by Eq. (17) is  used for simplicity.  This condition should
be  preserved  under  field  variation ; a  smooth  cov-
ector field exists such that

τabn̄b = Ωτa. (65)

δφ̃
δφ̃ = Ωδφ̄
Finally,  there  are  no  requirements  for ;  hence,

.

(M̄, ḡab)
Now, it  is  straightforward to reexpress Eqs.  (55) and

(61)  in  the  unphysical  spacetime .  First,  the
presymplectic potential current is

θ̃abc =
1

16πG̃0
ϵ̄abcd

{
Ω−1

[
∇̄eτ

de−∇̄dτ−3τd

−(2ω+3)χφ̄n̄d
]
− (2ω+3)χ∇̄dφ̄

}
, (66)
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τ = ḡabτab χ = δφ̄ Ω−1

I

where  and .  The  presence  of  the 
factor  inside  the  curly  brackets  formally  indicates  the
blowing  up  of  this  expression  at , but  it  is  actually  fi-
nite. To demonstrate this, let us start with Einstein's equa-
tion,  i.e.,  Eq.  (13),  in  the  unphysical  spacetime  without
imposing the Bondi gauge explicitly, and then, let us vary
it:

δS̄ ab=̈4n̄(aτb)− n̄c∇̄cτab− ḡabn̄cτc+ (2ω+3)n̄an̄bχφ̄. (67)

S̄ abSimultaneously, by definition, the variation of  is [39]

δS̄ ab=̈− n̄(a∇̄b)τ− n̄c∇̄cτab+ n̄(a∇̄cτb)c+ n̄(aτb)

− 1
3

ḡab(n̄cτc− n̄c∇̄cτ). (68)

Comparing these two expressions,  we obtain the follow-
ing:

∇̄bτab−∇̄aτ−3τa− (2ω+3)χφ̄n̄a=̈0, (69a)

n̄a∇̄aτ+2n̄aτa=̈0. (69b)

I
Because of Eq. (69a), the presymplectic potential 3-form
(66) is finite at . Then, the Noether charge 2-form is

Q̃ab(ξ) = − 1
16πG̃

ϵ̄abcd∇̄c(Ω−2ξd), (70)

I

which takes the same form as the integrand of Eq. (7) in
Ref.  [56], as  expected.  Again,  this  2-form  seems  to  di-
verge at  , in an even worse manner than Eq. (66), but it
is  also  finite  there,  as  proved  in  Appendix  A.  Finally,
after some tedious algebraic manipulations, the symplect-
ic current 3-form is given by

ω̃abc =−
1

32πG̃
ϵ̄abc(τ′deδNde−τdeδN′de)

+
2ω+3
16πG̃

ϵ̄abc(χ′δN̄ −χδN̄′), (71)

τ′ab δ′ḡab χ′ = δ′φ̄
τab = 2δΣab

σab Nab
φ̄ N̄

where  is  defined  for ,  and .  Given  that
,  the  form of  this  symplectic  current  suggests

that  and  are canonically conjugate to each other,
and so  are  and .  From the  above equation,  one  may
choose a presymplectic potential current, given by

Θ̃abc(δg̃, δφ̃) = − 1
32πG̃

ϵ̄abcτ
deNde+

2ω+3
16πG̃

ϵ̄abcχN̄, (72)

ω̃abc I δΘ̃abc(δ′g̃, δ′φ̃)−
δ′Θ̃abc(δg̃, δφ̃) Θ̃abc

such  that  the  pullback  of  to  is 
. There is also an ambiguity in , but this

is  the  only  one,  according  to  the  argument  of  Ref.  [39].

Θ̃abcNote  that  enables  the  computation  of  the  flux,  as
will be discussed below.

B.    Fluxes
Θ̃abc B

I
Once  is  determined,  a  flux  through  a  patch ,

i.e., a subset of , can be obtained as follows:

Fξ,B =

∫
B
Θ̃abc(Lξg̃,Lξφ̃)

=− 1
16πG̃

∫
B
ϵ̄abc

{
Nde[(LξDp−DpLξ)ℓq

+2ℓ(pDq)K̄]γdpγeq− (2ω+3)(Lξφ̄+ K̄φ̄)N̄
}
, (73)

τab χ 2X̄ab
Lξφ̄+ K̄φ̄

φ̄
B C1 C2

where  and  in Eq. (72) are given by  [as in Eqs.
(35) and (50)]  and  [refer to Eq.  (40)],  respect-
ively.  This  should  be  compared  with  Eq.  (4.14)  in  Ref.
[50], which does not contain the term with . Let us sup-
pose that  is bounded by two cross sections,  and ,
with the latter in the future of the former, leading to

Fξ,B = −(Qξ[C2]−Qξ[C1]). (74)

I

This expresses the conservation of the charge and is also
called  the  flux-balance  law.  The  overall  negative  sign
above  indicates  that  as  the  GW  escapes  from ,  the
charge of the spacetime decreases.

B I
Hξ ≡ Fξ,I

I ξa

αn̄a Ya

If  is replaced by  in Eq. (73) and the resultant in-
tegral is finite,  is the Hamiltonian generator on
the  radiative  phase  space  on  associated  with  [41].
Using  the  transformations  expressed  by  Eqs.  (40),  (47),
and (48), the Hamiltonian generators for supertranslation

 and  the  Lorentz  generator  parameterized  by  can
be obtained as

Hα=
1

16πG̃

∫
I
ϵ̄abc

[
Nde

(
DpDqα+

α

2
Npq

)
γdpγeq

+α(2ω+3)N̄2
]
,

(75a)

HY =
1

16πG̃

∫
I
ϵ̄abc

{
Nde

[u
2
DpDq(D·Y)

+
1
2
σpqD·Y −LYσpq+

u
4

NpqD·Y
]
γdpγeq

+ (2ω+3)N̄
[
1
2

(uN̄ + φ̄)D·Y +LY φ̄

]}
,

(75b)

Nab
Nab

Nab
N̄

Nab N̄

respectively.  In  GR,  the  linear  term  in  in  Eq.  (75a)
gives  the  soft  charge  and  the  quadratic  one  in  the
hard  charge  [58, 61].  Likewise,  the  linear  terms  in 
and  determine the soft fluxes, and the quadratic ones in

 and  denote the hard fluxes [62]. Using the results
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presented  in  Sec.  II,  the  Hamiltonian  generators  can  be
explicitly calculated:

Hα =
φ0

16πG0

∫
α
[
DADBNAB+

1
2

NB
A NA

B

+ (2ω+3)
(

N
φ0

)2 ]
dud2Ω, (76a)

HY =Hα′ +
φ0

32πG0

∫
YA

[
1
2

(ĉC
BDANB

C −NC
BDAĉB

C)

+DB(NC
B ĉAC − ĉC

BNAC)

+
2ω+3
φ2

0

(NDAφ1−φ1DAN)
dud2Ω,

(76b)

α′ =
u
2
DAYA d2Ω = sinθdθdϕwhere ,  and ;  integration  by

parts  has  been  applied.  These  results  are  consistent  with
those in Ref. [36].

C.    “Conserved charges”

ξa

C C
I

ξa = ξa
1 + ξ

2
a

Now, we can calculate the “conserved charges”. Ac-
cording  to  the  decomposition  expressed  in  Eq.  (45),  any
BMS  generator  contains  a  component  tangent  to  a
cross section , and a component transverse to , once a
foliation of  is prescribed. The “conserved charges” for
different components will be calculated in different ways.
Thus,  can be re-written using [63]

ξa
1=̈

u−u0

2
ψ(∂u)a+YA(∂A)a, (77a)

ξa
2=̈

(
α+

u0

2
ψ
)
(∂u)a, (77b)

u0 C0 ξa
1

C0 u = u0 ξa
1

ξa
2
C0

where  labels a reference cross section  such that 
is tangent to  at . These expressions imply that 
is an infinitesimal Lorentz transformation, and  is a su-
pertranslation generator. Thus, the charges on  will be
determined.

ξa
1

C0

For the Lorentz generator ,  the “conserved charge”
on  is given by [39]

Qξ1
[C0] =

∮
C0

Q̃ab(ξ1), (78)

∇̃aξ
a = O

(
Ω2

)
ξa

with  the  requirement  that  [63]. This  re-
quirement is satisfied by , obtained in Ref. [34]. To cal-
culate this,  we  employ  the  asymptotic  solutions  presen-
ted in Sec. II to obtain

Qξ1
[C0] =

1
16πG̃

∮
C0

YA
[
2NA+

1
16
DA(ĉBC ĉBC)

+
2ω+3

4
φ1DAφ1

φ2
0

]
d2Ω. (79)

ξa
2For supertranslation generator , the “conserved charge”

satisfies [39]

δQξ2
[C0] =

∮
C0

[Q̃ab(αn̄)−αn̄cθ̃cab+αn̄cΘ̃cab]. (80)

ξa = αn̄a

Unfortunately, it is very difficult to calculate this expres-
sion directly.  Instead,  one can take the  advantage of  Eq.
(74). Now, let ; hence, the flux for this generator is

Fαn̄,B =−
1

16πG̃

∫
B
ϵ̄abc

[
γd f γehN f h

(
Lαn̄D f

−D fLαn̄

)
ℓh+ (2ω+3)αN̄2

]
, (81)

ξa = αn̄a
according to  Eq.  (73).  Next,  we apply  the  Stokes'  theor-
em to obtain the “conserved charge” for  [50]:

Qα[C] =
1

8πG̃

∮
C

Pdℓdn̄cϵ̄cab, (82)

with

Pa =
α

4
Kabℓb+Ncdγ

bdγc[en̄a](αDeℓb+ ℓeDbα)

− 2ω+3
6

αn̄aφ̄N̄. (83)

N̄ = 0

ξa
2

By  setting  in  Eqs.  (81)  and  (83),  the  GR's  results
are  recovered  [48, 50].  Now,  using  the  results  presented
in Sec. II, the “conserved charge” conjugate to  is ob-
tained as follows:

Qξ2
[C0] =

1
8πG̃

∮
C0

(
2αm−u0YADAm

)
d2Ω. (84)

α α+u0ψ/2where  was replaced by  in Eq. (82).
The total “conserved charge” is the sum of Eqs. (79)

and (84):

Qξ[C] =
φ0

8πG0

∮
C

[
2αm−uLYm+YANA+

1
32
LY (ĉA

BĉB
A)

+
2ω+3

8
φ1LYφ1

φ2
0

d2Ω,

(85)
Cwhich is  evaluated  at  some arbitrary  and is  consistent

with Eq. (3.5) in Ref. [63]. Note that,  in the above com-
putation, we implicitly assume that the all charges of the
Minkowski spacetime vanish, given that any constant can
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Qξalways  be  added  to  without  breaking  Eq.  (59).  This
imposes a nontrivial condition [39]∫

∂Σ

{
ηcθ̃cab(Lξg̃,Lξφ̃)− ξcθ̃cab(Lηg̃,Lηφ̃)

+L̃ϵ̃abcdη
cξd − Q̃ab[Lηξ]

}
= 0, (86)

ηa L̃
g̃ab = ηab φ̃ = φ̃0

where  is also a BMS generator, and  is the Lagrange
density  in  Eq.  (4).  In  addition,  and ,
which  are  implicitly  included  in  this  expression.  The
demonstration that this condition is satisfied is presented
in Appendix B.

αn̄a Ln̄α = 0

Now,  let  us  work  out  the  “conserved  charges ”  for
some  specific  BMS  generators.  First,  consider  a  generic
supertranslation  generator  with .  The  “ con-
served  charge ”  is  called  the  supermomentum,  which  is
given by

Pα[C] =
φ0

4πG0

∮
C
αmd2Ω. (87)

α l = 0,1
Pa

P0

Among these supermomenta, four of them are special and
are obtained by replacing  by  spherical harmon-
ics. They constitute the Bondi 4-momentum . In partic-
ular, zeroth component  is the Bondi mass

M =
φ0

4πG0

∮
C

md2Ω, (88)

Pa

α YA

which justifies the name of m. In some literature, “super-
momenta” do not include  [63-65]. Second, switch off

, and write  as follows [63]:

YA =DAµ+ ϵABDBυ, (89)

ϵAB

µ υ l = 1
(D2+2)µ = (D2+2)υ = 0

µ υ YA

where  is the totally antisymmetric tensor on the unit
2-sphere,  and  and  are  linear  combinations  of 
spherical  harmonics,  satisfying ;

 is the electric part, and  the magnetic part of . The
electric part generates the Lorentz boost, whose charge is

Kµ[C]=− φ0

8πG0

∮
C
µ

DANA+2um−
ĉB

AĉA
B

16
− 2ω+3

8
φ2

1

φ2
0

d2Ω,

(90)

and the magnetic part generates the rotation with the fol-
lowing charge:

Jυ[C] = − φ0

8πG0

∮
C
υϵABDANBd2Ω, (91)

NA

Kµ Jυ
which explains why  is called the angular momentum
aspect;  and  are  called  the  CM  and  the  spin
charges,  respectively.  Given  that  there  are  three  linearly

l = 1

Kµ

independent  spherical  harmonics,  there  are  both
three linearly  independent  boost  and rotation charges.  In
total,  there are  six,  which is  consistent  with the fact  that
the Lorentz algebra is six dimensional. Note also that the
scalar  field  only  contributes  to  boost  charge . A  re-
mark regarding the forms of the spin and CM charges is
in order. There are different conventions in defining what
is  called  the  Bondi  angular  momentum  aspect  [66, 67].
Thus,  the  spin  and  CM  charges  and  the  relevant  fluxes
take different forms. These differences are summarized in
Ref. [68] in GR.

V.  MEMORIES

As  discussed  in  Ref.  [34],  GWs  in  both  tensor  and
scalar sectors induce the displacement memory effects. In
that  study,  the  focus  was  on  the  relation  between  the
memory effects  and  the  asymptotic  symmetries  that  in-
duce  the  vacuum  transitions.  Here,  we  reanalyze  the
memory  effects,  with  a  focus  on  the  constraints  on
memories imposed  by  the  flux-balance  laws.  We  con-
sider not only the displacement memory but also the spin
and the CM memory effects [25, 26].

N = φ̇1 = 0
NAB =−∂uĉAB = 0

Ψ4, Ψ3 Ψ2− Ψ̄2 1/r

Nab =
∗Kab = 0 ĉAB

We also  consider  the  memory  effects  between  vacu-
um states in the tensor and scalar sectors. Following Ref.
[34],  a  vacuum state  in  the  scalar  sector  is  simply  given
by . However, a vacuum state in the tensor sec-
tor  is  determined  not  only  by  but  also
by  the  vanishing  of  the  Newman-Penrose  variables  [69]

 and  at  leading  orders  in  [70].  This
definition agrees with the one in GR and also with the re-
quirement that  [50]. Now,  can be writ-
ten as follows [63]:

ĉAB =

(
DADB−

1
2
γABD2

)
Φ+ ϵC(ADB)DCΥ, (92)

Φ Υ

Υ = 0
where  is the electric part,  and  the magnetic part.  In
vacuum, .

A.    Displacement memory effects

αn̄a

Let  us  start  with  the  displacement  memory  effect  in
the  tensor  sector.  First,  we  rewrite  the  flux-balance  law
associated  with  supertranslation  in  the  generalized
Bondi-Sachs coordinates:

Fαn̄,B =
φ0

16πG0

∫
B
α
[
DADBNAB+

NABNAB

2

+ (2ω+3)
(

N
φ0

)2 ]
dud2Ω = −∆Pα, (93)

∆Pα = Pα[C2]−Pα[C1]where  for simplicity. We can cal-
culate the retarded time integral of the soft flux above and
then rearrange the expression to obtain
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∮
C
αD2(D2+2)∆Φd2Ω =

32πG0

φ0
(Eα+∆Pα), (94)

Eα Fαn̄,B
∆Φ

Eα
∆Pα

where  is  without  the  first  term  in  the  square
brackets;  Eq.  (92)  has  been  used.  Therefore,  fully
captures  the  displacement  memory  in  the  tensor  sector,
and it is completely constrained by the above equation. It
is  often  stated  that  causes  the  null  memory,  whereas

 causes the ordinary memory [71].

YA

Now, let us consider the displacement memory effect
in  the  scalar  sector.  Following  the  above  argument,  one
may  want  to  consider  the  flux-balance  law  for  Lorentz
generator , given by

FY,B =∆Pα′ −
φ0

16πG0

∫
B

[
YAJA+υϵABNCAĉB

C

]
dud2Ω

+
φ0

64πG0

∮
C
µ∆

2ω+3
φ2

0

φ2
1+

ĉB
AĉA

B

2

d2Ω

=−∆Kµ−∆Jυ, (95)

∆Pα′ α
α′ = uD2µ/2 = −uµ ∆Kµ ∆Jυ
∆Pα

where  is the integral of Eq. (93), with  replaced by
;  and  are  defined  similarly

to , and

JA =
1
2

NB
CDAĉC

B −
2ω+3
φ2

0

NDAφ1. (96)

∆Pα′ α′

υ = 0
Note that  is not a flux, given that  depends on

u. In fact, the magnetic part could be set such that ,
and the expression could be rearranged to obtain

∮
µ∆

2ω+3
φ2

0

φ2
1+

ĉB
AĉA

B

2

d2Ω = −16πG0

φ0
(∆Kµ+∆Pα′ +Jµ),

(97)

Jµwhere  is given by

Jµ =
φ0

16πG0

∫
B
µDAJAdud2Ω. (98)

∆φ2
1

∆Kµ

It may seem that this is a constraint equation on , but
that is not the case, according to Eq. (90). In fact, the left
hand side is canceled by the terms in . Nevertheless,
Eq. (95) is useful for CM memory.

∆φ2
1

In  fact,  the  equation  of  motion  gives  a  constraint  on
, which is

∆φ2
1 =

16φ2
0

2ω+3

{ 1
32
∆(ĉB

AĉA
B)+D−2DA∆NA

−
∫ u f

ui

du
[
m+

1
2
D−2DAJA

]}
, (99)

D−2 D2

∆φ1

where  is the inverse operator of  and is explicitly
given in Ref. [34]. These results suggest that  is a per-
sistent variable [72], as stated in Ref. [36].

B.    Spin memory effect

guA

YA

LYγAB = γABD·Y YA

YA

YA

Spin memory effect exists only in the tensor sector, as
it  depends on the leading order  term in  [25, 34].  To
determine the constraint on the spin memory effect from
the flux-balance law, one needs to consider the extended
BMS  algebra,  which  includes  all  satisfying the  con-
formal  relation .  These  may  not  be
globally  smooth  on  the  unit  2-sphere  [54, 63, 73].
However,  in Sec.  IV, we assumed  are smooth vector
fields; hence, the fluxes and charges calculated there can-
not  be  directly  used  here.  Fortunately,  there  is  a  simple
remedy.  We can  still  use  the  fluxes  and  charges  defined
above, examine  the  flux-balance  law,  find  the  discrep-
ancy,  and  fix  it.  It  turns  out  that,  without  modifying  the
definition of the charge, one may want to add the follow-
ing correction to the flux associated with  [63]:

FY,B =
φ0

32πG0

∫
B

YADB(DADC ĉC
B −DBDC ĉC

A)dud2Ω

=
φ0

64πG0

∫
B
ϵABYADBD2(D2+2)Υdud2Ω.

(100)

YA

µ = 0
∆R =

∫
duΥ

This  correction  vanishes  when  is  smooth  on  the  unit
2-sphere. Now, adding this term to the right hand side of
the first line in Eq. (95), and setting , we obtain the
constraint on the spin memory, measured by 
[63]:

∮
C
υD2D2(D2+2)∆Rd2Ω = −32πG0

φ0
(∆Jυ+Qυ+ J̄υ),

(101)

where

Qυ = −
φ0

16πG0

∫
B
υϵABNAC ĉB

Cdud2Ω, (102a)

J̄υ =
φ0

16πG0

∫
B
υϵABDAJBdud2Ω. (102b)

υ

l = 1
Note that, here,  is not necessarily a linear combination
of  spherical harmonics.

C.    Center-of-mass memory effect

D2(D2+2)
Φ = Φn+Φo

Now,  consider  the  CM  memory.  Given  that
 in  Eq.  (94)  is  linear,  one  may  define
 such that

“Conserved charges” of the Bondi-Metzner-Sachs algebra in the Brans-Dicke theory Chin. Phys. C 45, 023122 (2021)

023122-13



∮
C
αD2(D2+2)∆Φnd2Ω =

32πG0

φ0
Eα, (103a)

∮
C
αD2(D2+2)∆Φod2Ω =

32πG0

φ0
∆Pα. (103b)

Then, the CM memory effect is determined by [26, 36]

∆K =
∫ u f

ui

u∂uΦodu.

∆Pα′It appears in , i.e.,

∆Pα′ = −
φ0

64πG0

∮
C
µD2D2(D2+2)∆Kd2Ω. (105)

Thus, Eq. (95) can be rewritten to yield

∮
C
µD2D2(D2+2)∆Kd2Ω =

64πG0

φ0
(Jµ−∆K ′µ), (106)

∆K ′µwhere  is not the change in any charge, given by

∆K ′µ = −
φ0

8πG0

∮
C
µ∆(DANA+2um)d2Ω. (107)

µ l = 1
Therefore,  the  CM memory  is  constrained  by  Eq.  (106),
as  long  as  is  not  simply  a  linear  combination  of 
spherical harmonics.

VI.  CONCLUSION

(γab, n̄a)
{Da}

(Nab, N̄)
∗Kab

{Da}

In  this  study,  we  analyzed  the  asymptotic  structure
and BMS symmetries in an isolated system in the BD us-
ing the covariant conformal completion method. The res-
ults thus obtained are independent of the coordinate sys-
tem used. There are four different orders of the asymptot-
ic structure, as in GR. The zeroth-order structure 
is  universal,  and  the  first-order  structure  character-
izes the differences among spacetimes. The second-order
structure  constitutes the radiative degrees of free-
dom, and the third-order structure, , contains the full
gauge covariant information in  [51]. The BMS sym-
metries also include the supertranslations and the Lorentz
transformations,  and  their  actions  on  the  asymptotic
structure  are  discussed.  Based  on  these,  the  “conserved
charges ”  and  fluxes  were  computed  according  to  the
Wald-Zoupas  formulism.  If  one  switches  off  the  scalar
field,  the  GR's  results  are  reproduced.  The  scalar  field
only  contributes  to  the  CM  charge,  but  it  appears  in  all
fluxes. Finally,  the  flux-balance  laws  are  used  to  con-
strain various memory effects. Among them, the displace-
ment memory effect in the scalar sector cannot be restric-

ted by the flux-balance laws,  but  the equation of  motion
constrains it  partially.  Memory  effects  in  the  tensor  sec-
tor  are  well  constrained  by  the  flux-balance  laws,  as  in
GR.

APPENDIX A: FINITENESS OF THE NOETHER
CHARGE

In this  section,  the  finiteness  of  Eq.  (70)  is  demon-
strated. According to Stokes' theorem,∫

C
Q̃ab =

∫
S 0

Q̃ab+

∫
Σ′

daQ̃bc, (A1)

S 0
Σ′

S 0 C
Q̃ab

where  is  a  finite  topological  2-sphere  in  the  physical
spacetime,  and  is a  3-dimensional  hypersurface  join-
ing  to . If the last two integrals are both finite, then
the first is also finite, and so is integrand .

ϵ̄abcd
The  integrand  of  the  third  integral  can  be  contracted

with , and one can, thus, examine [56]

∇̄b∇̄[a(Ω−2ξb]) =Ω−2R̄abξ
b+ ∇̄a∇̄b(Ω−2ξb)

−∇̄b∇̄(a(Ω−2ξb)), (A2)

R̄ab ḡabwith  being  the  Ricci  tensor  of . Using  the  prop-
erty described by Eq. (35), one can reexpress the last two
terms in the above equation as follows:

∇̄a∇̄b(Ω−2ξb)−∇̄b∇̄(a(Ω−2ξb)) =Ω−1(3Xa+ ∇̄aX−∇̄bXab)

+Ω−3ξb(2∇̄an̄b+ ḡab∇̄cn̄c

−3Ω−1ḡabn̄cn̄c).
(A3)

Then, according to Eq. (13), we obtain

ΩR̄ab+2∇̄an̄b+ ḡab∇̄cn̄c−2Ω−1ḡabn̄cn̄c

− 1
2
Ω−1ḡabL̄ = Ω−1L̄ab, (A4)

L̄ = ḡabL̄abwith . Therefore, Eq. (A2) becomes

∇̄b∇̄[a(Ω−2ξb]) =Ω−1(3Xa+ ∇̄aX−∇̄bXab)

+Ω−4ξb
(
L̄ab+

1
2

ḡabL̄
)
. (A5)

L̄abNow,  substituting  this  in  the  definition  of  ex-
pressed by Eq. (14), we obtain

∇̄b∇̄[a(Ω−2ξb]) =Ω−1
[
3Xa+ ∇̄aX−∇̄bXab

+
2ω+3

2
(K̄φ̄2+ φ̄Lξφ̄)n̄a

]
+ K̄φ̄∇̄aφ̄+ ∇̄aφ̄Lξφ̄. (A6)
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IAgain, Eq. (A6) on  seems to diverge as well, which is
not true. To understand this, let us use Eq. (37) to calcu-
late

LξR̄ab =−2∇̄a∇̄bK̄ +2n̄(a(Xb)−∇̄b)X+ ∇̄cXb)c)
+4Xc(a∇̄b)n̄c−Xab∇̄cn̄c−X∇̄an̄b−2Ln̄Xab

+Ω(2∇̄c∇̄(aXc
b)+2∇̄(aXb)−∇̄c∇̄cXab−∇̄a∇̄bX),

(A7a)

LξR̄ =−2∇̄a∇̄aK̄ +4n̄aXa−2Xab∇̄an̄b

−2X∇̄an̄a−4Ln̄X−2K̄R̄+2Ω(∇̄a∇̄bXab

−∇̄a∇̄aX+2∇̄aXa−XabR̄ab). (A7b)

Lξ(Ω−2L̄ab)
O (Ω)
Knowing ,  which  can  be  demonstrated  to

be , Eq. (37) leads to

n̄(a

[
3Xb)+ ∇̄b)−∇̄cXb)c+

2ω+3
2

φ̄(Lξφ̄+ K̄φ̄)n̄b)

]
− 1

6
ḡab(∇̄c∇̄cK̄ +4n̄cXc+2Ln̄X)=̈0. (A8)

∇̄a∇̄aK̄ = 0It turns out that . Therefore, we obtain

3Xa+ ∇̄aX−∇̄bXab+
2ω+3

2
φ̄(Lξφ̄+ K̄φ̄)n̄a=̈0, (A9a)

2n̄aXa+Ln̄X=̈0. (A9b)

I
This implies that Eq. (A6) is, indeed, finite, and so is Eq.
(A1). Therefore, Eq. (70) is finite on .

APPENDIX B: VERIFY CONDITION (86)

ηa ξa

Equation  (86)  should  hold  in  BD.  In  the  Minkowski
spacetime, any BMS generator is a sum of a supertransla-
tion  and  a  Killing  vector  field.  If  either  or  are  a
Killing vector field, Eq. (86) is satisfied [39].  As in GR,
we only have to check if∫

∂Σ

[ηcθ̃cab(Lξg̃,Lξφ̃)− ξcθ̃cab(Lηg̃,Lηφ̃)] = 0, (B1)

ξa=̈αn̄a ηa=̈βn̄a

Ln̄α =Ln̄β = 0
where  and  are two supertranslation gener-
ators,  with .  Let us calculate the first  term
in the square brackets above, which is

ηcθ̃cab =
1

16πG̃
βF(α)n̄cϵ̄cab, (B2)

F(α)with function  given by

F(α) =− n̄aΩ
−1[∇̄bλ

ab−∇̄aλ−3λa− (2ω+3)χφ̄n̄a]

+ (2ω+3)χN̄=̈−∇̄a∇̄bλ
ab+ ∇̄2λ

+3∇̄aλ
a+ (2ω+3)χN̄, (B3)

λab = ΩLξg̃ab = Ω
−1(Lξḡab−2K̄ḡab) λ = ḡabλab

λa = λabn̄b/Ω

∇̃aξ
a = 0

where , ,
and . The first three terms add up to a quant-
ity  proportional  to  the  so-called  “flux ”  defined  by  Eq.
(19)  in  Ref.  [56],  in  which the gauge condition 
was  imposed.  As  discussed  in  that  study,  their  flux  can
also be calculated using Eq. (20),  which is gauge invari-
ant. In the current case, we can also rewrite the above ex-
pression as follows:

F(α)=̈−∇̄a∇̄bλ
ab+3∇̄aλ

a+
3
4
∇̄2λ+

1
24

R̄λ+ (2ω+3)χN̄.
(B4)

F(α) ξa = αn̄a−Ω∇̄aαNow, we must calculate  with  [56],
thereby obtaining

K̄ = Ω(αϑ−σα), (B5)

λab = −2∇̄a∇̄bα− (αϑ−2σα)ḡab−α(S̄ ab−Ω−2L̄ab),
(B6)

λa = ∇̄a(αϑ−2σα)− (S̄ ab−Ω−2L̄ab)∇̄bα, (B7)

λ = −2∇̄2α−4(αϑ−2σα)−α
(

R̄
3
−Ω−2L̄

)
. (B8)

With these, we obtain

F(α)=̈− α(2ω+3)
3

[
2N̄2− φ̄L2

n̄φ̄
]
− 1

4

(
∇̄2− R̄

6

)
×

(
∇̄2α+2αϑ−4σα+

αR̄
6

)
, (B9)

L2
n̄φ̄ =Ln̄N̄where . It can be easily verified that

∇̄2α=̈D2α+2σα. (B10)

∇̄2∇̄2αTo calculate , one needs

Ln̄∇̄2α =2Ln̄σα+Ω
(
∇̄2σα+2ϑσα−

R̄σα
3

+
1
6
∇̄aα∇̄aR̄−ϑ∇̄2α+ S̄ ab∇̄a∇̄bα

)
+O

(
Ω2

)
, (B11)

O (Ωn) I Ωnwhere  denotes a finite term at  multiplied by .
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Hence, we obtain

∇̄2∇̄2α =D2D2α+4∇̄2σα+4ϑσα−
2
3

R̄σα

+
1
3
∇̄aα∇̄aR̄−2ϑ∇̄2α+2S̄ ab∇̄a∇̄bα+O (Ω) .

(B12)

Ln̄ϑ Ln̄R̄
ξa = n̄a

To  proceed  further,  we  need  and .  Then,  Eq.
(A7b) becomes useful, setting . Thus, we obtain

Xn̄
ab = −

ϑ

2
ḡab−

1
2

(S̄ ab−Ω−2L̄ab), Xn̄
a =
∇̄aϑ

2
, (B13)

Xn̄ = −2ϑ− R̄
6
+
Ω−2L̄

2
, K̄ n̄ = Ωϑ. (B14)

∇̄2K̄ n̄ = 0Given that , we obtain

∇̄2K̄ n̄ = 2Ln̄ϑ+Ω

(
∇̄2ϑ+2ϑ2− ϑR̄

6

)
+O

(
Ω2

)
, (B15)

and, therefore,

Ln̄ϑ = −Ω
(

1
2
∇̄2ϑ+ϑ2− ϑR̄

12

)
+O

(
Ω2

)
. (B16)

This implies that

∇̄2ϑ = −ϑ2+
ϑR̄
12
+

1
2
D2ϑ+O (Ω) . (B17)

Equation (A7b) gives

Ln̄R̄ =Ω
{
− ϑR̄

2
+

3
2

S̄ abS̄ ab+ (2ω+3)

×
[
4N̄2+ φ̄L2

n̄φ̄
]}
+O

(
Ω2

)
, (B18)

and thus,

∇̄2R̄ = −ϑR̄+3S̄ abS̄ ab+2(2ω+3)
[
4N̄2+ φ̄L2

n̄φ̄
]
+O (Ω) .

(B19)

Finally, the “flux” is given by

F(α) =
1
2

(
D2D2α+2D2α+2NabDaDbα

+
α

2
NabNab

)
+

2(2ω+3)
3

αLn̄(φ̄N̄). (B20)

Nab = 0 N̄ = 0In  the  Minkowski  spacetime,  and ; there-
fore,

F(α) =
1
2

(
D2D2α+2D2α

)
, (B21)

F(α)which  implies  that  Eq.  (86)  is  satisfied.  is  exactly
the same as that in GR, up to a certain factor [74].
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