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tions and Lorentz transformations for an asymptotically flat spacetime. With the Wald-Zoupas formalism, “con-
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I. INTRODUCTION

The detection of gravitational waves (GWs) by
LIGO/Virgo collaborations [1-13] confirmed Einstein's
prediction based on general relativity (GR) [14, 15]. GWs
now constitute a probe into the nature of gravity in the
strong-field and high-speed regime. With GWs, several
methods have been developed to elucidate whether grav-
ity is described by GR or its alternatives. For example,
one may examine whether a GW waveform agrees with
GR's prediction precisely; one could also count how
many GW polarizations are detected [16, 17]. The GW
memory effect is probably the most intriguing phenomen-
on because of its intimate relation with asymptotic sym-
metries.

The memory effect and asymptotic symmetries have
been investigated by numerous studies in the field of GR
[18-24]. This effect usually refers to the permanent
change in the relative distance between test particles far
away from the source, approximately at the null infinity
I, due to the passage of GWs. It is also called the dis-
placement memory. The asymptotic symmetries are dif-
feomorphisms preserving the geometry of 7 and form the
Bondi-Metzner-Sachs (BMS) group, which is a semi-dir-
ect product of an infinite dimensional commutative super-
translation group and the Lorentz group. The energy flux
of a GW induces a transition among degenerate vacua,

which are associated with each other by the action of su-
pertranslations. This explains the memory effect in GR
[24]. In addition, the spin memory and center-of-mass
(CM) memory are related to the angular momentum flux
arriving at I [25, 26].

Alternative theories of gravity also include the
memory effect, as discussed in Refs. [27-33]. In particu-
lar, Ref. [34] discussed the memory effect and BMS sym-
metries in the Brans-Dicke theory (BD) [35] using the
fully nonlinear equations of motion, as opposed to the
post-Newtonian formalism in Refs. [27, 28]. It was dis-
covered that there are also asymptotic symmetries at 7 in
BD, similar to those in GR. Because of the presence of
the plus and cross polarizations in BD, the displacement
memory effect also exists in BD and is related to the en-
ergy flux and supertranslations. The breathing polariza-
tion also causes the displacement memory; it was named
S memory by Du and Nishizawa [29]. The angular mo-
mentum flux penetrating 7 and the Lorentz transforma-
tions cause the vacuum transitions in the scalar sector.
Utilizing a slightly different coordinate system, Ref. [36]
obtained similar results. In the present study, the asymp-
totic symmetries of an asymptotically flat spacetime in
BD were analyzed again using Penrose's conformal com-
pletion method [37, 38]. This method is covariant and in-
dependent of the coordinate system used.

It is well-known that the existence of symmetries im-
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plies the existence of some conserved charges, according
to Noether's theorem. Thus, the BMS symmetries on 1
prompt us to search for such quantities defined on 7.
However, in general, there are GWs passing through 7
hence, it is difficult to obtain them, and worse, none of
these quantities are actually conserved. These quantities
vary along 7, and the changes should be provided by
some fluxes. All the “conserved charges” and associated
fluxes can be calculated using the Hamiltonian formal-
ism devised by Wald and Zoupas [39]. This is a general
method applicable to any theory of gravity. The proced-
ure starts by specifying the phase space with certain
boundary conditions, computing the presymplectic poten-
tial current, 6,,., and symplectic current, wgp., and ob-
taining the Neother charge 2-form, Q. (¢), associated
with an infinitesimal BMS transformation, &*. Then, to
find the “conserved charges” and fluxes on 7, the asymp-
totic behavior of the symplectic current is studied so that
a second presymplectic potential current, ®,., on I can
be constructed, thereby setting the restriction of the sym-
plectic current to 7. Finally, the flux density is simply
Oupe, and the variation of the “conserved charge” is
5Q¢[Cl = .[6Qup(€) = € Ocap+E°Ocqp], With C denoting a
cross section of 7. Once a suitable reference spacetime is
chosen, the “conserved charge,” O, can be obtained that
satisfies Q:[C]— Q:[C'] = fzs(aab“ where 8 is a patch in 7
bounded by C and C’. There are also some ambiguities in
choosing 8,p¢, Wape, and O, as well as an issue concern-
ing the choice of the reference spacetime, which have
been thoroughly discussed in Ref. [39]. In addition, Refs.
[40, 41] nicely reviewed this formalism; it is worthwhile
to read both.

In previous studies, Noether charges and currents
were also considered for black holes in a more general
BD with a variable w(y) and a generic potential V(¢) in
both Jordan and Einstein frames [42, 43]. References [44,
45] reported that at least in GR, the BMS group is a sub-
group of the so-called conformal Carroll group, whose
charges have been computed. One may also add to the ac-
tion terms that have no influence on the equations of mo-
tion, but that may lead to new charges, as described in
Refs. [46, 47].

In this study, we applied the Wald-Zoupas formalism
to BD, as will be described in the following sections. We
start with a brief review of the asymptotically flat space-
time in BD in Sec. II. Then, the asymptotic structure is
discussed again in Sec. III within the context of the con-
formal completion method. Following Refs. [48-51], the
radiative modes are identified in Sec. IIIA, and we de-
termine the infinitesimal BMS symmetries in Sec. I1IB.
Section IV discusses the “conserved charges” and fluxes.
The presymplectic potential current and symplectic cur-
rent are computed and analyzed in Sec. IVA. Based on
these computations, the fluxes and charges are obtained,
as presented in the following two subsections: [IVB and

IVC. Finally, the flux-balance laws are applied to con-
strain the displacement memory (Sec. VA), spin memory
(Sec. VB), and CM memory (Sec. VC) in Sec. V. Sec-
tion VI presents a short summary. Some technical details
have been relegated to Appendices A and B. The abstract
index notation is used [52], and the speed of light is set to
¢ =1 in vacuum.

II. BRANS-DICKE THEORY

In this section, we review the asymptotically flat
spacetime in the BD based on Ref. [34]. It is well known
that the action of the BD is expressed as follows [35]:

1
S =
1671'G()

fdx4 \/—_g(QDR - gvasovaﬁo) B (1)

where w is a constant, Gy is the bare gravitational con-
stant, and the matter action is ignored. Some phenomeno-
logical aspects have been summarized in Ref. [34]. The
variational principle gives rise to the following equations
of motion:

1 871G
Rup— EgabR = ﬂTabs (28.)
[

Vava(p = O’ (2b)

in which 7, is the effective stress-energy tensor for ¢,
given by

1 w 1 X
Tub = — VoV — =g VopV°
b 87TG0[90( PVpp ng c® ‘P)

+V, Vo - gachVCsO}. 3)

Equation (1) is said to be written in Jordan frame.

From a previous study [34], it is known that
© =0 +O(r’1) in an asymptotically flat spacetime. Con-
sequently, the following conformal transformation can be

applied, g, = ﬁgab, and set ¥ e%; then, the action be-

comes [53] #o

1 _ 2w+3. -
S =— -g|R—- V. pVep], 4
16nt‘/ g( 5 @ sv) 4)

where G =Go/gy. This action is written in Einstein
frame. The equations of motion are given by

~ 1 < ~
Rup— EgabR =81Go7 b, (53.)
V. Vg =0, (5b)

with
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- 2wH3 (4 . 1. - =
b= ——— VoV — =2, V@V, P). 6
> = 167Gy PVop— 8V EVp (6)

In Einstein frame, ¢ is proportional to a canonical scalar
field.

As discussed in Ref. [34], Egs. (2) can be solved us-
ing the generalized Bondi-Sachs coordinates (u,r,x> =
0,x° = ¢) [54],

Vv
ds? =e? = du® - 26 dudr + hyp(dx?
r
- Udu)(dx® — UBdu), (7
with A,B=2,3; 8,V,U*, and h,p are six arbitrary func-
tions. Moreover, certain boundary conditions are im-
posed [54]:
B =O(r’1>, V= —r+0(r0),
Ut =0(r?), ®)

along with the determinant condition
2
det(hag) = r* (%) sin 6. 9)

Then, the series expansions in powers of 1/r

Y1 1
sD:goo+7+ﬁ+o(r—3), (10a)
2 1
guu=_1+w_|_0 —1, (10b)
r r2
2
p1 L{1 g4, 20-5(¢
r:—l _t | — _ —
Bu wor r? 1648 8 0o
+ﬂ +0 1 , (10c)
$0 r
Dped 2 1. BC
8uA _T+§ NA+ZCABDCC
p1 ~B 1
-—9D +0|—=], 10d
129 P4 (rz) (109
gaB =r*Yap + V(fAB —YAB %) +dap
L p.c o7 902) (1)
+ =+ ———|+0[-]. 10e
')/AB(4 ctD ‘pg %0 - ( )

Here, yap is the metric on a unit 2-sphere, and D, is its
compatible covariant derivative; ¢y, @2, éap, and dsp are
expansion coefficients, which are arbitrary functions of
(u,x*). The indices of ¢45 and dsp are raised by 4%, and
Y8245 =y*8d,5 = 0. Functions m and Ny of (u,x*) are
called the Bondi mass aspect and the angular momentum
aspect, respectively. Einstein's equation (2a) leads to the
following evolutions of m and Ny :

2
1 1 20+3 (N
= =2 DADEN - Ny pNAE - 22 (D)
4 8 4 \go
(11a)
. 1
Ny =Dam+ Z(DBDAZ)CGBC - DpDPDCES)
1 1 1
- EDA(NEE-B) + ZNgDAég + Zz)B(zv/f el
. 2w+3
- cgNg) +——5— (@1 DaN =3NDp),
8¢;
(11b)

where Nup=-086s3/0u is the news tensor, and
N = 0¢;/0u. Finally, the equation of motion (2b) for ¢
gives

_ o1N
(2]

=2y, (110)
with D? = Z)ADA .

As in GR, the asymptotically flat spacetime in BD
also exhibits BMS symmetries. An infinitesimal BMS
transformation, &%, is parameterized by a(x*) and Y4(x?)
defined on the unit 2-sphere. The transformation gener-
ated by « is called a supertranslation, and the one gener-
ated by Y is a Lorentz transformation. The action on the
solution space can be easily computed, for instance, giv-
en by [34]

Oepi =fN+%<P1 +Y Dy, (12a)

Sean = —fNag—2DaDf +yasDf+ Lyins %@w,

(12b)

and thus,
8¢Nag = fNag+ LyNas, (12¢)
8N = fN+yN + YA DN, (12d)

where ¢ = D, Y. With these expressions, it is possible to
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discuss the relation between BMS symmetries and gravit-
ational memories. It turns out that the displacement
memory effect in the tensor sector is caused by the null
energy fluxes, including that of scalar field ¢ passing
through 7, which is similar to the one in GR. This
memory effect is associated with the supertranslation
transformation, which induces the transition among the
vacua in the tensor sector. The scalar sector also contains
degenerate vacua; hence, the displacement memory oc-
curs in the scalar sector as well. This is caused by the pas-
sage of the angular momentum fluxes through 7, and a
Lorentz transformation induces the transition among the
vacua. The spin memory and the CM memory effects are
also of interest in GR [25, 26]; they exist in the tensor
sector as well. However, neither of them is present in the
scalar sector.

In Ref. [34], we did not calculate the “conserved
charges” of the asymptotically flat spacetime in the BD.
In the present study, we computed them using the covari-
ant phase space formulism devised by Wald and Zoupas
[39]. For that purpose, we started with the asymptotic
structure of BD, which will be described in the next sec-
tion.

III. ASYMPTOTIC STRUCTURE AT
NULL INFINITY

The asymptotic structure of spacetimes in GR has
been discussed and summarized in Refs. [48, 50-52]. In
this section, we follow these approaches to study the
asymptotic structure at 7 in BD. In particular, we utilize
the conformal completion, which brings 7 to a finite
place.

The asymptotically flat spacetime at 7 in BD can be
defined in the following way. A spacetime (M, g,) is said
to be asymptotically flat at 7 in vacuum BD, if an un-
physical spacetime (M’,g’,) and a conformal transforma-
tion C: M — C[M] c M’ exist such that

l.g,= Q>C*g,p in C[M], for some conformal factor
Q, where C* is the pullback;

2. I is the boundary of M in M’, and, on it, Q =0 and
V.Q#0;

3. the topology of T is S?> xR;

4. equations (2) are satisfied near 7.

With this definition, we can elucidate the asymptotic
structure at 7 for BD. However, Eqs. (2) are very com-
plicated because ¢ is not a canonical scalar field; hence,
the discussion in Jordan frame would be very involved.
Therefore, it is preferable to work in Einstein frame,
where the equations of motion (5) are simpler, and ¢ is a
canonical scalar field modulo a factor. We are allowed to
do the conformal completion in Einstein frame, because
under the above conformal transformation relating
(M,gap) to (M’,gl,), another unphysical spacetime
(M,zu.) can be found with g, = Q%3,,. As a matter of

fact, gu» = ﬁg;b. In this spacetime, I is still the bound-
$Yo_

ary of M in M with the topology being S? xR, and, on it,

Q=0 and V,Q#0, given that V, =V’ =9, for a scalar

field. However, instead of Egs. (2), Egs. (5) must now

hold near 7.

In the following, we will first identify the radiative
modes in BD and then discuss the asymptotic symmetries.

A. Radiative modes

Consequently, in Einstein frame, we can effectively
perform the conformal completion for GR with a canon-
ical scalar field. Many results obtained in GR can be car-
ried over directly. For example, the conformal transform-
ation of @ is @ = Q@ [48]. Then, Einstein's equation (5a)
becomes [48, 52]

anb"‘zvaﬁb_fgab ZQ_liab9 (13)

where S, = R,y —24,R/6 is the Schouten tensor for g,
i, = V,Q, f=n,1/Q, and L, is given by

[ 2w+3
ab = )

_ 1 _
Q? (Tuh - ggahT)7 (14)

with T ab = @ity + 2QP0 Vi@ + Q*V .oV P, and
7 =g"7,,. Here and below, the index of 7, will be
raised by g, i.e., i* = g%°#,. The scalar equation (5b) is

QV, Vi + eV, —2fp =0. (15)

Although the right hand side of Eq. (13) carries a factor
of Q7!, it is vanishing on I because L,, vanishes faster
according to Eq. (14). The finiteness of Eq. (13) implies
that 7,7% = 0, i.e., I is null, as expected.

In addition, the conformal factor can be freely chosen.
A new conformal factor, Q" = wQ, with @ > 0, is as good
as the old one. Under this type of gauge transformation,
one can calculate that

g:lb = wzgabs 9_0’ = w._IQZ’ (163.)
i, = wii, + QV, @, (16b)
f =o' f+20 %1V, o +o QV'@)V,@.  (16c)

A gauge may be chosen such that /=0, which also im-
plies that Vi) =0 according to Egs. (13) and (14). Here,
the = symbol means to evaluate the equation on 7. This
gauge is also called the Bondi gauge by analogy [52].
Next, we will fix such a gauge condition and drop all the
prime symbols, i.c.,
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F20, Vi, =0. (17)
These conditions imply that, on 7, the integral curves of
n“ are the affinely parameterized null geodesics, and the
null congruence is free of expansion, shear, and rotation
[55]. The first expression in the above equation can be re-
written as f=Q¢ for some function ¥ on M; hence,
1" = Q>9. The second expression in Eq. (17) is equival-
ent to

-Citgabio’ (18)

that is, 7% is a null Killing vector field on 7. A further
gauge transformation would maintain the Bondi gauge as
long as L;w=0.

According to the above discussion, the structure of 7
is characterized by g,, and 7* at the “zeroth order ™.
However, these are spacetime quantities defined on M.
One may prefer the intrinsic ones to 7; hence, let y,, be
the restriction of g, to 7. Note that a* is tangent to J;
therefore, it is naturally intrinsic to 7. Then, following
the terminology of Ref. [51], the zeroth-order structure of
T is the pair (y.,7%). This structure is universal, i.e., it is
shared by any asymptotically flat spacetime at I [48].
Given that y,i” is the restriction of g’ =V,Q to I,
Y’ = 0; hence, 7y, is degenerate. This is consistent
with the fact that I is null.

The first-order structure is covariant derivative D,,
induced on I by V, [51]. It satisfies

DaYpe =0, Dyit” = 0. (19)
Some of the higher-order structures require the following
quantities from D,. The curvature tensor, R4, can be
defined for D, as follows. Let v, be a covector field on
T ; then, one obtains

1
Z)[011)[7] Ve = zRabchd- (20)

Define  Rgpea = YaeRave’; then, Ry = YCdRacbd , and
R =y"R,,. Here, y** is “inverse ” to 7, such that
YacYpa Y = Yap- By counting the number of algebraically

independent components of R,,.%, one may prove that
there is a tensor field S,?, which satisfies [49]

Syt = (8" - R, 1)
such that
Rave” = VetaSp)? + Seta0i’ (22)

with Sg, = ¥peS.¢. Thus, R.? can be equivalently rep-

resented by S,°. In fact, S,” is nothing but the restriction
of §,to I.

Owing to the topology of 7, there exists a unique
symmetric tensor field p,, on 7 with the following prop-
erties [48]:

pabﬁb = 0’ yabpab = R, D[apb]c =0. (23)

We can now introduce the second-order structure, i.e.,
news tensor N, defined by

Nap = Sab —Pab- (24)

It is transverse, i.e., Ngi?=0 and traceless, i.c.,
¥® N4, = 0. Its nonvanishing nature indicates the pres-
ence of the tensor GW [34]. There also exists scalar field
@ on 7. Its Lie-drag, N = L% = N/¢,, along the integral
curves of 7 signals the existence of the scalar GW penet-
rating 7; hence, N (or, equivalently N) also belongs to
the second-order structure of 7.

Finally, the third-order structure can be introduced.
According to [52],

Ravea = Cabea + 8ateS aip — 8bieS dla- (25)

In the above, we have observed the roles that S, plays in
the asymptotic structure. Now, consider C,.4. Although
Ly 1S O(Qz) near 7, Cupeq still vanishes on 7 according
to Ref. [48]. Thus, the following two quantities are intro-
duced:

Kub — _49—1 C_vacbdﬁcﬁd’ *K[lb — _4Q—1 *C_vacbdﬁcﬁd’ (26)
where *C%"? is the Hodge dual [52]. Given that K%, =
*K%q, =0, they are naturally intrinsic to 7. They are
symmetric and traceless, i.e., v, K® =y, K% =0. They
are also dual to each other in the following sense:

yacKCh = _Eacdﬁd*KCha 'yac*KCh = EacdﬁdKCha (27
where €. 1s the volume element on 7, induced from

€abcd(= 4€apcia)). Following the argument in Ref. [48], it
can be shown that

L ae
DiaSp* = 7 Cavd K%, (28a)
202w+3 o
DK = % [oLaN - 28], (28b)
DK = 0. (28¢)
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*K% is the third-order structure on 7.
The gauge transformations of the above structures are
given by [50]

ra —1l-a

V=Y W= (29a)
Divp=Dyvp— 2w_1v(an)w +o Yy, oy, (29b)
N/, =Nu, N =w 2N, (29¢)
K/ = SR, FKb = oS gab (29d)

where @ is the restriction of V¢w to 7. Now, consider a
special gauge transformation with @ =1 on 7. Then, the
first-order structure, D,, changes according to

D vy = DaVp +KYapiiVe, (30)

where Vé@=«i® for a function x on I, but the remaining
structures stay the same. Therefore, although the zeroth-
order structure does mnot change, ie., (y,,7")=
(Yap,1*), covariant derivatives D/, and D, can be differ-
ent. This suggests the introduction of the concept of an
equivalence class {D,}, which is the set of covariant de-
rivatives associated with each other via Eq. (30) [49]. The
radiative degrees of freedom are encoded in {D,}. Now,
let Bab. and g/, be two metric fields in unpl_lysical space-
time M, and their covariant derivatives be V, and V/, re-
spectively. Further, let {D,} and {D/} be two equival-
ence classes of the induced covariant derivatives from V,
and V', respectively. Their difference is completely char-
acterized by a symmetric tensor field o, with o7” =0
and y*o, = 0. If one introduces a covector field, £,, on
I such that 7%¢, = 1, it can be shown that o, is the trace-
less part of the following tensor [49]:

Zap = (D= Do)l G

where D/, and D, are two representatives of {D/} and
{D,}, respectively. One can easily verify that o, has two
independent components, and they represent the radiat-
ive degrees of freedom in the tensor sector. In fact, by re-
placing v, with ¢, substituting Eq. (22) into Eq. (20), and
contracting both sides of the result by 7#”, the following is
obtained:

Nap = =2L50qp. (32)

Here, to derive this relation, a trivial derivative, D,, with
Daly, =0, is applied, setting X, = (D, — D), = Dulpy. In

this sense, o is the shear of a null congruence with tan-
gent vector fields ¢ = g% ¢, on I.

The metric solution presented in the previous section
is actually in the Bondi gauge. To demonstrate this, first,
the solution is transformed to the one in Einstein frame,
and then, a conformal transformation is performed with
Q = 1/r. In the coordinates {u,Q,0, ¢}, the metric is

ds? = [—92 +20%m+ O(Q“)] du® +2 [1 + 0(92)] dudQ

+|Q2Dpef +O(Q?)|dudx* + | ya5 + Qéan

+Q? (dAB + B o+ %Bageg) + 0(93)} dxtda®,
Yo

(33)
and the scalar field is
o
¢=ﬂ+g[ﬂ——g)+0(g2). (34)
%o %o 2¢;

With Eq. (33), one can verify the validity of the Bondi
gauge condition (17). Note also that 7, = V,Q; hence,
n* = (d,)*. Finally, by setting ¢, = (du),+O(Q), we obtain
OAB = 6A3/2 and NAB = —auéAB.

B. BMS generators

As discussed in Ref. [56], an infinitesimal asymptotic
symmetry, &4, induces the following variation in g,:

Q?6¢8ab = LeGav
:Lfgab - 2I_<gah = ZQXah, (35)

for a smooth scalar field K = &%i,/Q [57] and a smooth
tensor field X, in M. The well-posedness of this expres-
sion requires that £“i1,=0 for & to be tangent to 7. This
equation can be rewritten as

L“,’gah = z(kgah + Q)_(ab)- (36)

By examining (L Lz — LiL: — Liza1)8ar = 0 with the con-
formal Einstein's equation (13), the following is obtained:

- 6,1?],1_( + 4171(,1)_(1,) + ZSW((,X;,) — gahflc)_(c
1 . e _
= 5Le(Sap = Q7 Lap) = LXap = 0, (37)
where X, =Q7'X,,#n’ and X =g*X,,. Again, the well-
posedness of Eq. (37) leads to the fact that X, is trans-

verse to 7 so that X, is finite on 7. The action of & on
n“ can be easily calculated as

023122-6



“Conserved charges” of the Bondi-Metzner-Sachs algebra in the Brans-Dicke theory

Chin. Phys. C 45, 023122 (2021)

L = —Ki® + QV'K - 207X, (38)
Contracting both sides by 7, gives
_ 1 -
LK = z(Lff—Kf)» (39)

without imposing the Bondi gauge condition. What about
the action of & on @? First, one can perform 6:¢ =
L:p=Q(Lep+Kp). Second, according to the definition
of the asymptotic symmetry in Ref. [34], the transformed

“physical” ¢ is allowed to decay as 1/r ~ Q. Therefore,
we have that

6ep = Lo+ K, (40)

which actually agrees with the transformation property of
o1 in Ref. [34]. Indeed, ¢=¢;/¢q.

Now, we know how a BMS generator acts on g,, and
A% in unphysical spacetime M according to Egs. (36) and
(38). By restricting these equations to 7, we obtain [48]

Leyay =2Kyap, Lt = —Kit. (41)
Eq. (39) implies that £L:K =0 on I in the Bondi gauge.
Therefore, &4 is a conformal Killing vector field on 7.

Among the BMS generators, there are infinitesimal su-
pertranslations given by [56]

&= ain” — OV + Q%u, (42)
where « is a smooth function, and u® is a smooth vector

field on M. Moreover, a should satisfy Lza =Qg, for
some smooth function ¢, on M. One can show that

K =Q(a¥-¢,+0), (43a)
_ I )
Xab =— VaVbCU— z(aﬂ_ 2§a +2@)gab
a - 9= _ —
-38w-0 2Lap) + 2fiqtty + QV ity (43b)
o _lg l < 27 \gb
=§Va(aﬂ_2§a +0)— E(Sab -Q 7 Ly)Va
l e Q 5 N
+ En Vyu, + Z[3ﬂua + (S —Q " Ly)u’], (43¢)
o, R .
X=-V (x—2(aﬂ—2ga+g)—a'(§—§2 L)
+QV 4, (43d)

where o = u%f, and u, = ggpub. On I, £%=an® and L=0.

Given that K20, a7 is a Killing vector field.

For a generic BMS generator £, let us directly con-
sider its restriction to 7. It satisfies the following condi-
tions [48]:

flafa = O,
Dialpy = Ky ap-
Lz, =0, (44)

with &, = g,»£”. The first expression is because £ is tan-
gent to 7. The second and third are basically Eqgs. (41).
Conversely, if a covector field, &,, satisfies Eqgs. (44), one
can find a BMS generator, £, that satisfies Egs. (41) and
&, =vapt?. Owing to the degeneracy of y,,, & is not
unique; one can add to it an arbitrary supertranslation
generator an® without modifying &,. If & and &“ are
deemed equivalent, as long as they only differ by a super-
translation, the solutions to Egs. (44) belong to an equi-
valence class. The set of such equivalence classes is iso-
morphic to the Lorentz algebra owing to the topology of
I. Given that this set is also the quotient algebra of the
BMS algebra modulo the supertranslation algebra, one
verifies that the BMS algebra is, indeed, the semi-direct
sum of the supertranslation algebra and the Lorentz al-
gebra.

Once a foliation of I is chosen, & can be uniquely
decomposed. This foliation can be obtained by starting
with a reference leaf Cy, a cross section, at some retarded
time up and then Lie-dragging it along the integral curves
of 7 to an arbitrary C. One can further let the normal to
C be ¢,; then, £ is decomposed according to

gﬂ&(m gZ)-Y)ﬁ“+Y“, (45)

where D-Y =y**D,Y;, = 2K on 1. Here, component Y* is
tangent to C, generating the infinitesimal Lorentz trans-
formation and leaving C invariant, but i, i.e., an infin-
itesimal supertranslation, induces a one-parameter group
of diffeomorphisms that changes the foliation for a gener-
al «. It can be demonstrated that Lyy,, =2Kvy, but
Lyn® =0, which means that Y“ itself is not a BMS gener-
ator. This explains the presence of the term proportional
to u, which, along with Y¢, is a genuine BMS generator.
One should also know how a BMS generator transforms
D, to calculate the flux and the “conserved charge”. To
this end, it should first be noted that for any & and v,

(LeDu—DaLe)vp = ERiar’ — DaDpé)ve.  (46)

Consequently, for a supertranslation &*=an?, the fol-
lowing useful result can be obtained:
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OanZab :(-Eah@a - Z)al:ah)gb

=-9P Z)ba' ab + K Yabs (47)

a
2
where Eq. (22) has been used, and «’ is a function on I
that is irrelevant for the coming discussion. Then, the
Lorentz transformation also transforms 9, as follows
[S8]:
OyZap =(£§Da _DaL.f)fb
1
=-2DDyD V)~ 74D Y
2 2
u
+Lyoap — Z(D' Y)Nap = €(aDp)(D-Y)
1 1
+ Zyabé’Z) Y+ EyabY”Z)C& (48)
where ¢ =y%D,l,. The traceless parts of Eqgs. (47) and
(48) are 8,704 and dyoyyp,, respectively. In the end, & in-

duces the variation of g, according to Eq. (36); hence, its
connection, Iy, also changes, which is given by

(LeVy = Vo Loy == ve8eTC) = vel it Xap — 27 Xp)°

-260, Vi) K +3a VK +O(Q)].  (49)

Now, take the restriction to 7, and set v, = £,, thereby ob-
taining

Xab = (LeDo = Da L)l + 20Dy K =yl VK, (50)

where V¢ is not replaced by D, in the last term, because
this term is useless in the following calculation.

IV. “CONSERVED CHARGES” AND FLUXES

A. (Pre)symplectic currents

Following Ref. [39], we can start with the variation of
the action described by Eq. (1),

1
= d* V=2(E68™ + E,6
16”G0f 8(Eap08 00Q)

+ f d*x V=gV, (51)

where E,, is Einstein's equation, which takes a different
form to that of Eq. (2a) but is equivalent, and E, = R+
2

Yy Ve — —Va(,DV“(p The last term above is a surface
[ @?

term, where 6%, or its Hodge dual, is the so-called

presymplectic potential current, given by

Oubc(08,09) =———— €dave| 08" 8" (V 16gen — Vb8 1)

167 G
§%g""(SgmV.ep - 6gehvfso>—76wd
(52)

With 6,,., the symplectic current is given by

Wabc :60abc(6/g, 6,‘%7) - 6/9abc(6gy o))
_ 1 1
167Gy 167Gy

x |28 gV (6¢V 16’ gen—0"genV r¢p)

+(gdp e fh gde fp qh)égpqé gthfQD

d
€dabcPW + €dabe

1 ! e 2 4 e
+ ng "5’ g n0gV oip — 75 <p(6gd Vep+ V7
1
+ 381510/ ¢V0) - 3 0 8 (53)

where (§ < §’) represents the terms obtained by switch-
ing ¢ and & within the remaining terms in the square
brackets, and w* has been calculated in Ref. [39] for GR,
ie,

we _(gu e d]cgbf+gaegh gc]d+ga[d b]cgef)
X (6'8pcVi08ef — 085V ad' gep). (54

However, the above results were computed in Jordan
frame, where Eqs. (2) are complicated, and the calcula-
tion of the “conserved charges” and fluxes is very likely
to be involved.

To resolve the complication, all quantities in Egs.
(52) and (53) should be replaced by the corresponding
ones in Einstein frame. One may also directly calculate
the presymplectic potential current and the symplectic
current using the action described in Eq. (4) in Einstein
frame, which are

1
Oupe = Edahc [g gf (Vfégeh - V 6gfh)

167G
- Quw+3)5eV4g], (55a)
l [1 20)+3 =
(Dac Eac~ ~éa56,~V(5~
b 16Gdb 16ﬂGdh ("2 "%
! ~ c~dexy ~ 1~ef ~ 1 ~7d ~ /
+0° o8 Ve¢+§g 08ef0' Vi@ —(6 < 6"}/,
(55b)

where w* takes similar forms to w* in Eq. (54), with all
g's and V's replaced by g and V, respectively. However, a
careful examination reveals that these two methods give
distinct presymplectic potential currents,
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Oapc(08,00) = étzbc(ég: 0P) + Aupe, (56a)
Aape = iidahc (6@"6?@ + 1 3765,/ V0+V45p)|.
167G 2
(56b)

Nevertheless, the symplectic currents are the same, i.e.,
Wapc(08,60) = Wapc(68,6@). Although A, is nonvanish-
ing in general, it is closed, i.e., ﬁ[aAde] =0, if Egs. (5)
and their linear perturbations are satisfied. Indeed, the
following can be obtained:

. 9 711 - L~
~abcd ~ab ¢~ 2~ ~ab ~
VilAped =——=| =808,V +(6 V.V
€ bed 82 28 gab V™~ P 8 by
< c~aby ~ 1~ab~ ~ TC~ | T2~
+ Va0V + 78 V68 V@ +V 590)],
(57)

where the terms in the round brackets represent the lin-
earized scalar field equation. Therefore, Agp. = me,w]
locally for some 2-form Y,;,, locally constructed out of
8up,®, and their variations [59]. According to Ref. [39],
there is always an ambiguity in choosing 6,,.. Given that
we work in Einstein frame, we ignore the difference,
Aape.

Now, let us choose an arbitrary, closed, embedded 3-
dimensional hypersurface, ¥, without boundary. The
presymplectic form, Zs, is given by the following integ-
ral:

Ez(6§,5¢;5'§,5'¢)=fcbabc(5§',5¢;5/§,5'¢)- (58)
z

Let us suppose now that §’g,, and ¢’¢ are induced by a
vector field &, i.e., ' 8ap = L:8ap and 6'¢ = L:p. Further-
more, if the equations of motion (5) are satisfied by g,
and @, and the linearized equations of motion are also sat-
isfied by 62, and 6@, then the above integral defines the
variation of a Hamiltonian, or a charge Q;, conjugate to £,

FOLE] = fz Dube(68.05: Le7, Le®). (59)

The integral above can be rewritten as the one over a 2-
dimensional surface 9% [39],

FOL0%] = fa 100 ~ET(©2.07) (60)

and, therefore, we now take §Q; as a function of 9%, in-
stead of X. In the above expression, the Noether charge 2-
form, O, is

- 1 ~
iy = ————=Eaped VEE, 61
Oub Tond abed 3 (61)

which takes exactly the same form as that in GR [60].
Here, the § symbol means that a function Q: might not
exist. The sufficient and necessary condition for the exist-
ence of Q¢ on X is that, for all (68.s,6¢) and (6’8, @)
satisfying the linearized equations of motion [39],

) & Wean(08,0;6'8,6'¢) = 0. (62)
)

When this condition is violated, for example, when 0% is
a cross section of 7, there is a prescription to find a “con-
served charge” Qg conjugate to &%, which will be dis-
cussed in the next two subsections. Before that, the beha-
viors of G,pc, @ape, and O, must be analyzed near 7.
Equations (55) and (61) are the most important ones
for calculating the “conserved charges” at 7. Given that
7 in the physical spacetime is not at a finite place, it is
probable that these equations blow up at 7. Thus, it is ne-
cessary to check whether they are finite at 7 or not and to
know the behaviors of 62,, and §@. For that purpose, the
field variation should not change the conformal factor,
i.e., 6Q = 0. Simultaneously, 7 is a universal structure for
any asymptotically flat spacetime [48]. Consequently, the
unphysical metric, g,5, should remain the same at 7,

68ab = Q2084 =0, (63)

which implies that a smooth tensor field 7,, exists such
that

S8ab = Waps  6Fap = Q' Tap- (64)
By applying a method similar to the one applied to ob-
tain Eq. (50), it can be shown that 7,,=26X,,. As dis-
cussed in Sec. III, the Bondi gauge condition described
by Eq. (17) is used for simplicity. This condition should

be preserved under field variation §g,,; a smooth cov-
ector field 7, exists such that

T’ = Q1. (65)

Finally, there are no requirements for &6@; hence,
5¢ = Q6p.

Now, it is straightforward to reexpress Egs. (55) and
(61) in the unphysical spacetime (M,g,). First, the
presymplectic potential current is

i) _ 1 = -1 e _vod d
eabc —mfabcd {Q [Ver -Vér-37

~Qu+3pn’| - Qw+3nVigl.  (66)

023122-9



Shaoqi Hou, Zong-Hong Zhu

Chin. Phys. C 45, 023122 (2021)

where 7 =3%1,, and y =6@. The presence of the Q!
factor inside the curly brackets formally indicates the
blowing up of this expression at 7, but it is actually fi-
nite. To demonstrate this, let us start with Einstein's equa-
tion, i.e., Eq. (13), in the unphysical spacetime without
imposing the Bondi gauge explicitly, and then, let us vary
1t:

88 ap =47 Ty — 1V Tap — 8apiTe + Qw + 3)aiipy@.  (67)
Simultaneously, by definition, the variation of S, is [39]

oS ab=— ﬁ(aﬁb)‘r - flcvc‘l’ab + ﬁ(achb)c +R(qTh)

1 _
- ggab(ﬁc'rc —iV,T). (63)

Comparing these two expressions, we obtain the follow-
ing:

Vorw — Vot =37, — Qw+ 3)x @it =0, (69a)

7V, + 27, 20. (69b)
Because of Eq. (69a), the presymplectic potential 3-form
(66) is finite at 7. Then, the Noether charge 2-form is

- 1 _
Oup(é) = —@EMWQ—Z#), (70)

which takes the same form as the integrand of Eq. (7) in
Ref. [56], as expected. Again, this 2-form seems to di-
verge at 7 , in an even worse manner than Eq. (66), but it
is also finite there, as proved in Appendix A. Finally,
after some tedious algebraic manipulations, the symplect-
ic current 3-form is given by

~ 1 = rde de ’
Wape = — 327TG~ Eabc(T 6ng -7 6Nde)
2w+3 _ _
+——=¢€ "6N —yO6N"), 71
Torg et ON —xON) D

where 7/, is defined for §'g., and x’ = §'¢. Given that
Tap = 2024, the form of this symplectic current suggests
that o, and N, are canonically conjugate to each other,
and so are $ and N. From the above equation, one may
choose a presymplectic potential current, given by

- 1 2w+3 _
Ouvc(68,60) = ————= Eupe T Ny + —ewxN, (72
bc(08,00) 390G de+ S EabcX (72)
such that the pullback of @ue to T is 0 (8'8,6"P)—
8" ®uc(63,6%). There is also an ambiguity in @, but this
is the only one, according to the argument of Ref. [39].

Note that ©,,. enables the computation of the flux, as
will be discussed below.

B. Fluxes

Once @, is determined, a flux through a patch B,
i.e., a subset of 7, can be obtained as follows:

Feg= fza Oubc (L, Lep)

1 _
== 167G Lfabc{Nde[(Lfﬂp—DpL.f)fq

+ 26Dy K1yPy* - 2w +3)(Lep+ KN}, (73)

where 1., and y in Eq. (72) are given by 2X,; [as in Egs.
(35) and (50)] and L:p+ K¢ [refer to Eq. (40)], respect-
ively. This should be compared with Eq. (4.14) in Ref.
[50], which does not contain the term with @. Let us sup-
pose that 8 is bounded by two cross sections, C; and Cs,
with the latter in the future of the former, leading to

Feg=—(Q¢[Ca] - Q¢[C1]). (74)

This expresses the conservation of the charge and is also
called the flux-balance law. The overall negative sign
above indicates that as the GW escapes from 7, the
charge of the spacetime decreases.

If 8 is replaced by 7 in Eq. (73) and the resultant in-
tegral is finite, H; = F; 7 is the Hamiltonian generator on
the radiative phase space on I associated with & [41].
Using the transformations expressed by Egs. (40), (47),
and (48), the Hamiltonian generators for supertranslation
an® and the Lorentz generator parameterized by Y* can
be obtained as

1
167G

+aQuw+ 3)N2],

(o4

f Ene [Nde (z)pz)qa+ %Npq)yd"yeq
I

(75a)

1

re 167G

f Eue{Nie| 5D, D,(D-Y)
7 2

1 u
+ Ea'qu . Y—LYO'pq + ZNqu . Y:|’)/dp')/eq

+Quw+ 3)N[%(uﬁ+ DY+ Lygb} }
(75b)

respectively. In GR, the linear term in N, in Eq. (75a)
gives the soft charge and the quadratic one in N, the
hard charge [58, 61]. Likewise, the linear terms in N
and N determine the soft fluxes, and the quadratic ones in
Ng and N denote the hard fluxes [62]. Using the results
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presented in Sec. II, the Hamiltonian generators can be
explicitly calculated:

!
%o f a[Z)AZ)BNAB+ NN

“ = 161Gy 2
N 2
+(2w+3)(¢—0) ]dudZQ, (76a)
Hy = %o All B Cay
v=Hot 33 G0 Y25 DaNe = Ny Datc)

+ DB(NGeac — 5 Nac)
2w+3

2
0

+ (NDag1 — thZ)AN)} dud?Q,

(76b)

where o’ = gZ)AYA, and d’Q =sin#dfd¢; integration by
parts has been applied. These results are consistent with
those in Ref. [36].

C. “Conserved charges”

Now, we can calculate the “conserved charges”. Ac-
cording to the decomposition expressed in Eq. (45), any
BMS generator £ contains a component tangent to a
cross section C, and a component transverse to C, once a
foliation of I is prescribed. The “conserved charges” for
different components will be calculated in different ways.
Thus, & = €9+ &2 can be re-written using [63]

u—

2

1210 9, + YA(94)°, (77)

&2 (a+ 2u)@.r, (775)
where ug labels a reference cross section Co such that &}
is tangent to Co at u = uy. These expressions imply that &/
is an infinitesimal Lorentz transformation, and £5 is a su-
pertranslation generator. Thus, the charges on Cy will be
determined.

For the Lorentz generator £7, the “conserved charge”
on Cy is given by [39]

0:[Col =5§ Ourlé), (78)

with the requirement that V,&° :O(Qz) [63]. This re-
quirement is satisfied by &4, obtained in Ref. [34]. To cal-
culate this, we employ the asymptotic solutions presen-

ted in Sec. II to obtain

1
167G
N 2w+3 1 Dagi

R

1
0:[Col = 56 yA [ZNA + —Da(epce®c)
: Co 16

d’Q. (79)

For supertranslation generator &, the “conserved charge”
satisfies [39]

6Q§: [CO] = é [Qab(aﬁ) - a'r_lcécab + aﬁc(;jcabl (80)

Unfortunately, it is very difficult to calculate this expres-
sion directly. Instead, one can take the advantage of Eq.
(74). Now, let £&* = an®; hence, the flux for this generator is

1 = daf . eh
16”GL€abc['y Y th(-gozﬁ@f

~DyLaon) by + 2w +3)aN?], (81)

FozFL,B ==

according to Eq. (73). Next, we apply the Stokes' theor-
em to obtain the “conserved charge” for £&* = an® [50]:

1
W[Cl = —= O Plii‘Eu, 82
0.[C] SﬂGﬁ N Ecap (82)
with

P =%K“”£b +NeaY"y CaN@Dely + L Dya)

aii@N. (83)

By setting N =0 in Egs. (81) and (83), the GR's results
are recovered [48, 50]. Now, using the results presented
in Sec. II, the “conserved charge” conjugate to & is ob-
tained as follows:

1 A 2
QelCol = - 95 (2am—upY*Dam)d*Q.  (84)

where o was replaced by a + upy/2 in Eq. (82).
The total “conserved charge” is the sum of Egs. (79)
and (84):

$0
8 G()

2w+3 o1 Ly
8 (pé

1
0:[Cl = 5@ [ZOzm —uLlym+Y Ny + 3—2&(@@@2)

+

]d29,

(85)
which is evaluated at some arbitrary C and is consistent
with Eq. (3.5) in Ref. [63]. Note that, in the above com-

putation, we implicitly assume that the all charges of the
Minkowski spacetime vanish, given that any constant can
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always be added to Q, without breaking Eq. (59). This
imposes a nontrivial condition [39]

»LZ {ncécab(Lfg’ Lf‘;b) - gcécab(-ﬁng’ LT]‘Z’)
+ Lewean € = Qup[ L€} = 0, (86)

where 7% is also a BMS generator, and £ is the Lagrange
density in Eq. (4). In addition, g, =n., and @ =g,
which are implicitly included in this expression. The
demonstration that this condition is satisfied is presented
in Appendix B.

Now, let us work out the “conserved charges” for
some specific BMS generators. First, consider a generic
supertranslation generator @i with L;a =0. The “con-
served charge” is called the supermomentum, which is
given by

P,ICl = 22 9§ amd®Q. (87)
C

4nGy

Among these supermomenta, four of them are special and
are obtained by replacing « by /=0, 1 spherical harmon-
ics. They constitute the Bondi 4-momentum P?. In partic-
ular, zeroth component P° is the Bondi mass

©0 2
M=— d“Q, 88
471'G() éém ( )

which justifies the name of m. In some literature, “super-
momenta” do not include P [63-65]. Second, switch off
«, and write Y4 as follows [63]:

YA = D+ '8 Dy, (89)

where €48 is the totally antisymmetric tensor on the unit
2-sphere, and u and v are linear combinations of /=1
spherical harmonics, satisfying (D? +2)u = (D* +2)v = 0;
u is the electric part, and v the magnetic part of ¥4. The
electric part generates the Lorentz boost, whose charge is

éBéA 2w+3 2
K.[C] :—8:‘:20 Sé‘u(Z)ANA+2um— AB_ w—ﬁ)dzﬂ,

and the magnetic part generates the rotation with the fol-
lowing charge:

g.[c] = -2 9§vé“BDANBd29, 1)
87TG() [}

which explains why N, is called the angular momentum
aspect; K, and J, are called the CM and the spin
charges, respectively. Given that there are three linearly

independent /=1 spherical harmonics, there are both
three linearly independent boost and rotation charges. In
total, there are six, which is consistent with the fact that
the Lorentz algebra is six dimensional. Note also that the
scalar field only contributes to boost charge %,. A re-
mark regarding the forms of the spin and CM charges is
in order. There are different conventions in defining what
is called the Bondi angular momentum aspect [66, 67].
Thus, the spin and CM charges and the relevant fluxes
take different forms. These differences are summarized in
Ref. [68] in GR.

V. MEMORIES

As discussed in Ref. [34], GWs in both tensor and
scalar sectors induce the displacement memory effects. In
that study, the focus was on the relation between the
memory effects and the asymptotic symmetries that in-
duce the vacuum transitions. Here, we reanalyze the
memory effects, with a focus on the constraints on
memories imposed by the flux-balance laws. We con-
sider not only the displacement memory but also the spin
and the CM memory effects [25, 26].

We also consider the memory effects between vacu-
um states in the tensor and scalar sectors. Following Ref.
[34], a vacuum state in the scalar sector is simply given
by N = ¢; = 0. However, a vacuum state in the tensor sec-
tor is determined not only by N =—0d,é45 =0 but also
by the vanishing of the Newman-Penrose variables [69]
W¥,,¥; and W, -, at leading orders in 1/r [70]. This
definition agrees with the one in GR and also with the re-
quirement that N, = *K* = 0 [50]. Now, ¢4 can be writ-
ten as follows [63]:

. 1
Cap =|DaDp— E)/ABDZ)(D + GC(ADB)Z)CT, (92)

where @ is the electric part, and Y the magnetic part. In
vacuum, T = 0.

A. Displacement memory effects

Let us start with the displacement memory effect in
the tensor sector. First, we rewrite the flux-balance law
associated with supertranslation a7 in the generalized
Bondi-Sachs coordinates:

(40 B NABNAB
Fo-p= DADENp+ o
5 = 161Gy fga[ ABT T

N

2
) ]dudzﬂ — AP, (93)
(")

+(2w+3)(

where AP, = P,[C2] - P,[C)] for simplicity. We can cal-
culate the retarded time integral of the soft flux above and
then rearrange the expression to obtain
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32 7TG()

56a92(2)2+2)m>d29 (Ea +AP,), (%94)
C

where &, is Fung without the first term in the square
brackets; Eq. (92) has been used. Therefore, A® fully
captures the displacement memory in the tensor sector,
and it is completely constrained by the above equation. It
is often stated that &, causes the null memory, whereas
AP, causes the ordinary memory [71].

Now, let us consider the displacement memory effect
in the scalar sector. Following the above argument, one
may want to consider the flux-balance law for Lorentz
generator Y4, given by

¢o )
Fro =0Py = b fB [YAJA +ueABNCAcg]dud29
B
%0 2w+3 5. a5 o
+ A T
647Gy S@“ ( 2 T
=-AK,— AT, (95)

where AP, is the integral of Eq. (93), with « replaced by
@ =uD* )2 = —uy; A%K, and AJ, are defined similarly
to AP,, and

Ja NBZ)A - " NDa¢r. (96)

Note that AP, is not a flux, given that ¢’ depends on
u. In fact, the magnetic part could be set such that v =0,
and the expression could be rearranged to obtain

2 ehey 1
96‘/1A[ w+3¢% cAcB}dZQ 67rG0(A7( FAPy + T,
@ 2 0

7

where 7, is given by

$0 DA 2

= Jadud-Q. 98
= e [ 5 98)

It may seem that this is a constraint equation on Ag?, but
that is not the case, according to Eq. (90). In fact, the left
hand side is canceled by the terms in A%,. Nevertheless,
Eq. (95) is useful for CM memory.

In fact, the equation of motion gives a constraint on
Ag?, which is

A@ReS) + D2 D AN,

16¢?
AG? 0 {
1= 2w+3

Uy
- f du
u;

m+ ED‘ZZ)AJA] } (99)

where D2 is the inverse operator of D? and is explicitly
given in Ref. [34]. These results suggest that Ag, is a per-
sistent variable [72], as stated in Ref. [36].

B. Spin memory effect

Spin memory effect exists only in the tensor sector, as
it depends on the leading order term in g4 [25, 34]. To
determine the constraint on the spin memory effect from
the flux-balance law, one needs to consider the extended
BMS algebra, which includes all Y4 satisfying the con-
formal relation Lyyap =yapD-Y. These Y4 may not be
globally smooth on the unit 2-sphere [54, 63, 73].
However, in Sec. IV, we assumed Y# are smooth vector
fields; hence, the fluxes and charges calculated there can-
not be directly used here. Fortunately, there is a simple
remedy. We can still use the fluxes and charges defined
above, examine the flux-balance law, find the discrep-
ancy, and fix it. It turns out that, without modifying the
definition of the charge, one may want to add the follow-
ing correction to the flux associated with Y4 [63]:

L4l A B AC
B = Q
7 Y,B 327Gy f Y*D (DAZ)CcB Z)BZ)CCA)dud
%o A VB2 ()2 2
= Y 2)Ydud“Q.
647TG()fBEAB D°D(D”+2)Tdu

(100)

This correction vanishes when ¥4 is smooth on the unit
2-sphere. Now, adding this term to the right hand side of
the first line in Eq. (95), and setting u = 0, we obtain the
constraint on the spin memory, measured by AR = f duY
[63]:

2
9§ VDD + DARPQ = -2 AT Q) + ),
C (0]
(101)
where
Q,=--X f veagNACeBdud?Q, (102a)
167Gy Jg ¢
g, =2 f v D), Jpdud?Q. (102b)
167TGO B

Note that, here, v is not necessarily a linear combination
of [ =1 spherical harmonics.

C. Center-of-mass memory effect
Now, consider the CM memory. Given that
D*(D?+2) in Eq. (94) is linear, one may define
O =D, + D, such that
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327G
% aDXD? +2)AD, 20 = 20 (103a)
C 0
321G
5602)2(2)2 +2)AD,d2Q = ZT0Np (103b)
C ("]

Then, the CM memory effect is determined by [26, 36]

A?(:f ud, ®,du.

It appears in AP, , i.e.,

AP, = ——20 56 UDEDHD? + DAKEQ.  (105)
647TG() C

Thus, Eq. (95) can be rewritten to yield

64n G()
$0

56 UD*DH(D? +2)AKd*Q = (Ju—AK),  (106)
C

where A%, is not the change in any charge, given by

, 0
AK, = -
H 871'G0

9§ UA(DAN, + 2um)d’ Q. (107)
C

Therefore, the CM memory is constrained by Eq. (106),
as long as u is not simply a linear combination of /=1
spherical harmonics.

VI. CONCLUSION

In this study, we analyzed the asymptotic structure
and BMS symmetries in an isolated system in the BD us-
ing the covariant conformal completion method. The res-
ults thus obtained are independent of the coordinate sys-
tem used. There are four different orders of the asymptot-
ic structure, as in GR. The zeroth-order structure (y,,7%)
is universal, and the first-order structure {D,} character-
izes the differences among spacetimes. The second-order
structure (N, N) constitutes the radiative degrees of free-
dom, and the third-order structure, *K“?, contains the full
gauge covariant information in {D,} [51]. The BMS sym-
metries also include the supertranslations and the Lorentz
transformations, and their actions on the asymptotic
structure are discussed. Based on these, the “conserved
charges ” and fluxes were computed according to the
Wald-Zoupas formulism. If one switches off the scalar
field, the GR's results are reproduced. The scalar field
only contributes to the CM charge, but it appears in all
fluxes. Finally, the flux-balance laws are used to con-
strain various memory effects. Among them, the displace-
ment memory effect in the scalar sector cannot be restric-

ted by the flux-balance laws, but the equation of motion
constrains it partially. Memory effects in the tensor sec-
tor are well constrained by the flux-balance laws, as in
GR.

APPENDIX A: FINITENESS OF THE NOETHER
CHARGE

In this section, the finiteness of Eq. (70) is demon-
strated. According to Stokes' theorem,

anb= Q~ab+fdacha (Al)
C So P

where S is a finite topological 2-sphere in the physical
spacetime, and ¥’ is a 3-dimensional hypersurface join-
ing Sy to C. If the last two integrals are both finite, then
the first is also finite, and so is integrand Q.

The integrand of the third integral can be contracted
with %¢¢_and one can, thus, examine [56]

VOV (Q72E) =Q72 R’ +V,V,(Q72")
~ VPV Q7). (A2)

with R,, being the Ricci tensor of g,,. Using the prop-
erty described by Eq. (35), one can reexpress the last two
terms in the above equation as follows:
VaVp(Q72E) = VIV Q7)) =Q7' 3Xa + VaX ~ V' Xap)
+ Q3P 2V ity + gy V ot

- 3Q7 g i16).

(A3)
Then, according to Eq. (13), we obtain
QR + 2V ity + §ap Vot — 2Q7 g i 1€
30 2wl =0 L, (Ad)
with L = g*L,,. Therefore, Eq. (A2) becomes
VoV1(Q728) =07 (3X, + V X = VP X,)
Lo (Lab + %gabi). (A5)

Now, substituting this in the definition of L, ex-
pressed by Eq. (14), we obtain

VoV (Q728,) =7 [3xa +V,.X-V0X,

2w+3
2
+ k¢va¢ + anZ’Lf‘;" (A6)

+

(K@ + oL@y
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Again, Eq. (A6) on I seems to diverge as well, which is
not true. To understand this, let us use Eq. (37) to calcu-
late

-E.fRab =— Z?aﬁbk + Zfl(a(Xb) — 6b)X + ?CXb)C)
+ 4Xc(ﬁb)ﬁ" - Xaﬁcr‘z" - X?aﬁh -2L: X
+ Q(Z?C?(aXZ) + Z?WX,,) — ?ﬁcxab - ?ﬁbX),

(A7a)
LeR =2V, VK + 47X, — 2X Vil
—2XV, " —4L; X - 2KR +2Q(V,V, X%
— V. VX +2V,X = XPR). (A7b)

Knowing Lg(Q‘ZZab), which can be demonstrated to
be O(Q), Eq. (37) leads to

w+3

- - 2
N 3Xh) + Vb) - VLXh)C + 2

P(Lep+ Kp)iip
1 - = - .
- B (VT R+ 47X+ 2LX)20. (A8)
It turns out that V,V*K = 0. Therefore, we obtain

_ _ 2w+3
3X, +V,X - VX, + 22

P(Lep+Kp)iig=0,  (A9a)

27X, + L X20. (A9b)

This implies that Eq. (A6) is, indeed, finite, and so is Eq.
(A1). Therefore, Eq. (70) is finite on 1.

APPENDIX B: VERIFY CONDITION (86)

Equation (86) should hold in BD. In the Minkowski
spacetime, any BMS generator is a sum of a supertransla-
tion and a Killing vector field. If either n* or & are a
Killing vector field, Eq. (86) is satisfied [39]. As in GR,
we only have to check if

e [ncécab (-E-fg9 Lf(;b) - fcécab (Lng’ L?]@)] = 09 (B 1)

where &?Zan® and n“=Ba* are two supertranslation gener-
ators, with L = £;8=0. Let us calculate the first term
in the square brackets above, which is

.~ 1 e
Tlcecab = %IBF(Q)” €cab (BZ)

with function F(e) given by

F(a) = =, Q7 [V = V92 =329 — Qw + 3)x@ii®]
+Quw+3))N=-V,V,4% + V22
+3V,1% + 2w+ 3)yN, (B3)

where gy = QLeBap = QN (Legab —2KZw), A =8,
and A, = 4,7’ /Q. The first three terms add up to a quant-
ity proportional to the so-called “flux” defined by Eq.
(19) in Ref. [56], in which the gauge condition V,&*=0
was imposed. As discussed in that study, their flux can
also be calculated using Eq. (20), which is gauge invari-
ant. In the current case, we can also rewrite the above ex-
pression as follows:

_ _ 3 1 _ _
F(@)=-Y,9,A% +3V,2% + ZVZ/l + 5 R+ Qw+3)¥N.
(B4)

Now, we must calculate F(a) with & = a® — QV% [56],
thereby obtaining

K =Qad-0,), (B5)

/lab = _zvavba - ((Iﬁ - zo—a)gab - a(S_ ab — Qizl:ab),

(B6)
Ao = V(@9 =200) = Sap— QL) Ve, (B7)
= R .
A=-2V a—4(m9—20'a)—a/(§—§2 L). (B8)
With these, we obtain
L Qw3 ooy 1fes R
Fla)z 3 |28 - 2L25] 7 N
_, aR

X Va/+2a/19—40'a+? , (B9)

where £2p = L;N. It can be easily verified that
VazDra+20,. (B10)

To calculate V2V2a, one needs

Ro,

L52a =2La0ry + Q(W(ra + 200, -

+ gVaaV“R—ﬂV2a+S”bVtha/)+O(Qz), (B11)

where O(Q") denotes a finite term at 7 multiplied by Q".
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Hence, we obtain

V22 =D?D*a +4V20, + 400y —

+=V,aVR-20V*a+ 25V V,a + O(Q).

(B12)

2R
—Ro,
3

w

To proceed further, we need Lz and L;R. Then, Eq.
(A7b) becomes useful, setting £&* = . Thus, we obtain

Vzﬁz—ﬁ2+ﬁ—R+lZ)20+O(Q). (B17)
122
Equation (A7b) gives
LiR =Q{ - ’%R + %S“bs‘ah +Qw+3)
x[482+pL35] | +O(@?), (BI8)

and thus,

V2R = —9R +35%5 4 + 22w +3) [4N2 + @ﬁ@] +0(Q).

(B19)
Finally, the “flux” is given by
F(a)= % (z)zz)za +2D%a + 2N D, Dya
+ %N“bNub) L2200 @Ry, (B20)

In the Minkowski spacetime, N, =0 and N =0; there-
fore,

F(a) = % (D*D*a+2D%), (B21)

which implies that Eq. (86) is satisfied. F(@) is exactly
the same as that in GR, up to a certain factor [74].

_ ) 1 _ _ V0
n _ _ " &5 _ _ 02 i _ a
Xop =58 =58 = La), Xg=—-  (BI3)
. R Q7 _,
X' = 20—~ + , K"=00. (B14)
6 2
Given that V2K = 0, we obtain
&2 it 2 > UR 2
VIR" =2La0+Q| V30 +207 - —= +0(Q%).  (BIS)
and, therefore,
_ ofLe2g, g2 PR 2
Lﬁﬂ_—g(zv 9+ —E)+O(Q ). (B16)
This implies that
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