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Abstract: The thermodynamics of BTZ black holes are revisited with a variable gravitational constant. A new pair
of conjugated thermodynamic variables are introduced, including the central charge C and chemical potential μ. The
first law of thermodynamics and the Euler relationship, instead of the Smarr relationship in the extended phase space
formalism, are matched perfectly in the proposed formalism. Compatible with the standard extensive thermodynam-
ics of an ordinary system, the black hole mass is verified to be a first order homogeneous function of the related ex-
tensive variables, and restores the role of internal energy. In addition, the heat capacity has also resulted in a first or-
der  homogeneous function using this  formalism,  and asymptotic  behavior  is  demonstrated at  the  high temperature
limit. The non-negativity of the heat capacity indicates that the rotating and charged BTZ black holes are thermody-
namically stable.
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I.  INTRODUCTION

The black hole, which is one of the most fantastic pre-
dictions in general relativity, was regarded as a thermody-
namic  system  in  the  pioneering  works  of  Hawking  and
Bekenstein  half  a  century  ago  [1, 2].  Bekenstein  argued
that the entropy of the black hole should be proportional
to its area of horizon, and Hawking calculated the thermal
spectrum of  the  black  hole  with  a  Hawking  temperature
using a semi-classical approach. The analogy between the
thermodynamics  of  an  ordinary  system  and  that  of  the
black  hole  was  subsequently  analyzed,  establishing  the
four laws of the black hole thermodynamics [3]. The ther-
modynamics  of  the  AdS  black  hole  has  recently  gained
attention owing to the special  role of  the AdS spacetime
in the AdS/CFT correspondence [4].

To interpret the non-trivial contribution from the non-
vanishing cosmological  constant  for the AdS black hole,
the  black  hole  thermodynamics  of  the  extended  phase
space was developed [5−9],  which introduces black hole
thermodynamics to a new stage that is now also referred
to as black hole chemistry [10]. The main idea of the ex-
tended phase space thermodynamics is the introduction of
a new thermodynamic pair  pressure-volume of  the black
hole, where the negative cosmological constant is treated
as the thermodynamic pressure of the black hole, and its

VdP

conjugate  variable  is  the  thermodynamic  volume  of  the
black hole. Significant efforts have been made regarding
the study of the black hole thermodynamics in the exten-
ded  phase  space  by  using  the  standard  thermodynamic
formalism and abundant  thermodynamic  behaviors,  such
as discovering  the  phase  transitions  and  critical  behavi-
ors for the AdS black hole [11−19]. In addition, note that
the  mass  of  the  black  hole  is  interpreted  as  the  enthalpy
rather  than the internal  energy owing to  the existence of
the  term in the first thermodynamic law in the con-
text of the extended phase space.

N2

C ∼ ld−2/G

Black  hole  thermodynamics  in  the  extended  phase
space has  gained  significant  attention,  inevitably  ques-
tioning  the  framework  of  holography, that  is,  the  means
of variation of the cosmological constant in the boundary
field theory. According to the AdS/CFT correspondence,
it is argued that a change of the cosmological constant in
the theory of gravity indicates a change in the number of
colors N or degree of freedom  (which is related to the
central charge C) in the boundary theory [20−22]. Altern-
atively, it is also suggested that if the boundary field the-
ory needs to be maintained as fixed in a certain situation,
the  cosmological  (Λ)  as  well  as  gravitational  (G) con-
stants can be varied, provided that the ratio  is
maintained as a  constant  [23],  where l is  the AdS radius
in the d-dimensional spacetime. Visser recently proposed
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holographic thermodynamics, in which the central charge
is introduced as a novel thermodynamics variable, and the
Euler relationship  as  well  as  the  first  law  of  thermody-
namics  of  the  boundary  field  theory  are  obtained  [24].
Furthermore,  the  holographic  duality  between  the  bulk
thermodynamics and boundary thermodynamics has been
previously considered,  in  which  the  definition  of  pres-
sure indicated in the bulk thermodynamics is used for the
extended phase space formalism, but with the variation of
G [25−27].

Despite the rapid development of the black hole ther-
modynamics  since  the  proposal  of  the  extended  phase
space, certain unaddressed issues requiring further invest-
igation remain. For instance,  the thermodynamic volume
conjugating  to  the  thermodynamic  pressure  of  the  black
hole lacks  a  physical  interpretation,  although  occasion-
ally  its  value  is  coincidentally  equal  to  the  geometric
volume  inside  the  horizon  of  the  black  hole.  Moreover,
the  well-known  Smarr  relation  of  the  rotating,  charged
AdS  black  holes  for  the d-dimensional  extended  phase
space thermodynamics is [28] 

(d−3)M = (d−2)TS −2PV + (d−3)ΦQ+ (d−2)ΩJ, (1)

S , P, Q, J

which  demonstrates  that  the  thermodynamic  potential M
cannot be expressed as a homogeneous function for its ar-
guments  with a universal order. However, the
presence of the Euler homogeneity in standard thermody-
namics,  which  plays  a  critical  role  in  understanding  the
equilibrium thermodynamic states, including those of the
black holes. To address the questions mentioned above, a
restricted version  of  Visser's  holographic  thermodynam-
ics is proposed in Gao and Zhao's work [29], in which the
cosmological  constant  is  considered  to  be  fixed  and  the
gravitational constant remains to vary. Consequently, the
first  law  of  thermodynamics  and  the  Euler  homogeneity
are  perfectly  matched  in  this  formalism  of  the  restricted
phase  space  thermodynamics,  which  has  been  further
verified  in  more  general  cases  and  higher  dimensional
spacetimes [30−32].

2

ΦQ

It was once thought that there was no black hole solu-
tion  in  the  three-dimensional  spacetime  until  the  well-
known  BTZ  black  hole  was  discovered  in  the  Einstein-
gravity theory with a negative cosmological constant [33,
34].  This  class  of  three-dimensional  black  holes  gained
significant attention owing to their special applications in
the AdS3/  CFT . The thermodynamics of the BTZ black
holes have been extensively studied in the extended phase
space  formalism  [35−39].  Nevertheless,  considering  the
Smarr  relationship  indicated  in  Eq.(1),  the  lack  of  the
Euler homogeneity becomes more prominent, that is, the
left hand side of Eq.(1) is identically equal to zero and the
term  vanishes regardless of the existence of the elec-
tric-magnetic  field.  This  "reduced''  Smarr  relationship  of

the three-dimensional black hole is confusing, and largely
motivates  us  to  consider  the  restricted  thermodynamics
formalism  for  the  BTZ  black  holes.  Demonstrating  that
the three-dimensional black holes also satisfy the require-
ments of the standard thermodynamics would be signific-
ant, where the first law of thermodynamics and Euler re-
lation are completely consistent.

h̄ = c =
kB = 1 ε = 1/µ0 = 2π

In  the  next  section,  we study the  thermodynamics  of
rotating and charged BTZ black holes explicitly in the re-
stricted  phase  space.  The  thermodynamic  quantities  are
calculated  and  proven  to  be  divided  into  the  following
two  groups  in  the  formalism:  extensive  and  intensive.
Moreover, the thermodynamic stability of the BTZ black
hole is analyzed considering the behaviors of the heat ca-
pacity.  Finally,  a  conclusion  is  presented  in  Sec.  III.  In
this  study,  the  following  units  are  adopted  to  match  the
Gauss's  law  in  the  three-dimensional  spacetime: 

, and . 

II.  EXTENSIVE THERMODYNAMICS OF THE
BTZ BLACK HOLE

The  action  of  the  three-dimensional  Einstein-gravity
with the Maxwell electromagnetic field is as follows: 

I =
∫

d3x
√−g
Å

R−2Λ
2κ

− 1
4µ0

FµνFµν
ã
,

κ = 8πG
Fµν

Fµν = ∇µAν−∇νAµ

in  which  is  the  gravity  coupling  constant,  Λ  is
the cosmological constant,  and  is the electromagnet-
ic field tensor defined as . The coupled
field  equations  are  derived  by  variation  of  the  action,
which provides the following: 

Gµν−Λgµν = κTµν, ∇νFµν = 0,

Tµνwhere  is the energy-momentum tensor of the electro-
magnetic field: 

Tµν =
1
µ0

Å
FµρFνσgρσ− 1

4
gµνF2

ã
.

The ansatz for the line element of a rotating spacetime is
[40]: 

ds2 = − f (r)dt2+ f −1dr2+ r2
Å

dθ− 4GJ
r2 dt

ã2

,

Aµand the Maxwell field  is expressed as follows: 

Aµ = (−Φ(r),0,0).

The metric function and electric potential can be directly
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obtained from the following field equation: 

f (r) =−8GM+
r2

l2
+

2GQ2µ0

π
ln
( r

l

)
+

16G2J2

r2 ,

Φ(r) =− µ0Q
2π

ln
( r

l

)
, (2)

2
µ0

µ0
2π

where M is the black hole mass, Q is the charge, and J is
the angular  momentum.  To  avoid  confusion  by  compar-
ing the metric function Eq. ( ) with other references, the
coupling constant  remains to indicate the moment.  In
the  following  sections,  the  permeability  is  valued  as

 for simplification.

(1)

(2)

The  electrostatic  potential  of  the  charged  BTZ black
holes  asymptotically  diverges  with  a  logarithmic  term.
Usually,  the  divergence  can  be  managed  using  the  two
following  approaches:  a new  thermodynamic  para-
meter associated with the renormalization length scale is
introduced [28];  a renormalized black hole mass is in-
troduced [40], which is the approach used in this study. 

A.    The rotating BTZ black hole
J , 0, Q = 0For a rotating BTZ black hole where , the

metric function reduces to the following form: 

f (r) = −8GM+
r2

l2
+

16G2J2

r2 ,

which is significantly similar to that of the four and high-
er dimensional rotating AdS black holes. This implies the
possibility of  simultaneously  achieving  the  Euler  homo-
geneity and the first law of thermodynamics of the rotat-
ing BTZ black hole.

f (r0) = 0
r0

The mass M is determined by  with the radi-
us of the event horizon , which yields the following: 

M =
r2

0

8Gl2
+

2GJ2

r2
0
. (3)

The entropy, angular velocity, and temperature of the ro-
tating BTZ  black  holes  in  the  three-dimensional  space-
time are obtained as follows: 

S =
A
4G
=
πr0

2G
,

Ω =

Å
∂M
∂J

ã
S ,l
=

4GJ
r2

0
,

T =
f ′(r0)

4π
=

r0

2πl2
− 8G2J2

πr3
0
,

A = 2πr0where  is the horizon area.
In addition, there are other essential thermodynamics

quantities  for  achieving  the  Euler  homogeneity  of  the

C = l/8G

d−1
ld−2/G

{µ,C}
l/G

black hole, which are denoted as the chemical potential μ
and its  conjugate  central  charge C.  The definition of  the
conjugate  central  charge  arises  from  the  concept  of  the
AdS/CFT correspondence, and is for the three-di-
mensional  Einstein  gravity.  There  are  several  candidates
for  the  generalized  central  charge  in  the  arbitrary  odd
( )-dimensional conformal field theory, for which the
scaling for  both is  with an ambiguous coefficient
[41].  The  value  of  the  central  charge  from  the  bulk  and
boundary  can  be  normalized  to  match  the  holographic
dictionary [42]. However, the coefficient does not matter
since the pair  appears in the first law, and thus only
the  scaling is important.

ZCFT = ZAdS

The  central  charge C is  treated  as  a  novel  thermal
quantity  in  black  hole  thermodynamics,  and  it  indicates
the  amount  of  substance  in  the  standard  thermodynamic
system.  Furthermore,  there  is  a  correspondence  between
the partition function of CFT and the gravity theory in the
asymptotic AdS spacetime  [43, 44]; thus, the
following is obtained: 

µC = F = −T lnZCFT = −T lnZAdS = T IE ,

IE

IE

where the  thermal  partition  function  of  the  CFT  at  a  fi-
nite  temperature  is  associated  with  the  free  energy,  and
the gravity partition function is calculated by the on-shell
Euclidean  action .  Then,  the  chemical  potential μ can
be directly obtained from the on-shell Euclidean action 
of gravity, which provides the following: [45] 

IEH = −
1
2κ

∫
d3x
√

g (R−2Λ) ,

IGHY = −
1
κ

∫
∂M

d2x
√

hK,

Ict =
1
κ

∫
∂M

d2x
√

h(
1
l

),

IEH
IGHY

Ict

where  is  the  Euclidean  version  of  the  Einstein-Hil-
bert action,  is the Gibbons-Hawking-York action, h
is the reduced metric of the hypersurface, K is the trace of
the extrinsic curvature, and  is the counterterm to can-
cel the divergence. The result is as follows: 

IE = IEH+ IGHY+ Ict = β

Ç
− r2

0

8Gl2
+

2GJ2

r2
0

å
,

β = 1/Twhere  is  the inverse temperature.  Combining all
the  results  of  the  thermodynamic quantities,  it  is  easy to
verify the following: 

T IE = µC = M−TS −ΩJ.
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Instead  of  obtaining  the  Smarr  relationship  of  the  black
hole thermodynamics in the extended phase space, we de-
rive an inspiring relationship which is similar to the Euler
relationship of the standard thermodynamic system: 

M = TS +ΩJ+µC. (4)

Furthermore, the  first  law  of  thermodynamics  for  rotat-
ing BTZ black holes can be verified straightforwardly as
follows: 

dM = TdS +ΩdJ+µdC. (5)

Note, in the proof of the first law Eq. (5), the AdS radius l
is restricted as a constant and the Newton’ s constant G is
allowed to vary; therefore, this scheme is also referred to
as the black hole thermodynamics in the restricted phase
space.

S , J, C

G, r0

Subsequently,  to  reveal  the  features  of  the  restricted
formalism  of  the  black  hole  thermodynamics,  all  the
thermal quantities of the BTZ black hole are classified in-
to two groups: one is extensive and the another is intens-
ive, as those in a standard extensive thermodynamic sys-
tem. A group of independent thermodynamic agreements

, exist,  and  all  the  thermal  potentials  can  be  ex-
pressed as a homogeneous function of these independent
agreements. First, we rewrite  as follows: 

G =
l

8C
, r0 =

S l
4πC
. (6)

By inserting Eq. (6) into Eq. (3), the mass M is rewritten
as follows: 

M =
S 2

16π2lC
+

4π2J2C
lS 2 , (7)

T, Ω, µand the conjugated thermodynamic variables  are
expressed as follows: 

T =
Å
∂M
∂S

ã
J,C
=

S
8π2lC

− 8π2J2C
lS 3 , (8)

 

Ω =

Å
∂M
∂J

ã
S ,C
=

8π2JC
lS 2 , (9)

 

µ =

Å
∂M
∂C

ã
S ,J
= − S 2

16π2lC2 +
4π2J2

lS 2 . (10)

(x1, . . . , xn)
In mathematics, an m-th order homogeneous function

with respect to its agreements  satisfies: 

f (λx1, . . . ,λxn) = λm f (x1, . . . , xn),
n∑

i=1

xi
∂ f
∂xi
= m f ,

m = 1
m = 0

T, Ω, µ
S , J, C

which  requires  for  the  extensive  quantities  and
 for the intensive quantities in a standard thermody-

namics system. From Eq. (7) and Eqs. (8)−(10), it  is ap-
parent  that M is  a  first  order  homogeneous  function  and

 are  the  zeroth  order  homogeneous  functions  of
, which are the intriguing results anticipated.

Precisely, S and J are extensive variables; the follow-
ing can be obtained based on Eq. (9): 

J =
lS 2Ω

8π2C
. (11)

Substituting Eq. (11) into Eq. (8) obtains the following: 

T =
S − l2SΩ2

8lπ2C
. (12)

S ≥ 0 T ≥ 0Because  and , the  following  boundary  is  ob-
tained: 

Ω ≤ 1
l
, (13)

which helps solve the entropy directly from Eq. (12): 

S = SC, S = 8π2lT
1− l2Ω2 . (14)

SApparently, S is  proportional  to C and  the  coefficient 
only depends on the intensive variables T and Ω, proving
that S is an extensive variable.

Inserting Eq. (14) into Eq. (11), J is also shown to be
an extensive variable: 

J =JC, J = 8π2l3T 2Ω

(1− l2Ω2)2 ,

Jwhere  the  coefficient  only  depends  on  the  intensive
variables T and Ω.

Moreover, the  Gibbs-Duhem  equation  can  be  ex-
pressed based on Eq. (5) and Eq. (4): 

dµ = −SdT −JdΩ,

S = S/C,J = J/C
S , J, C

where  are the  zeroth  order  homogen-
eous  functions  of .  The  Gibbs-Duhem  equation
suggests that μ is dependent on Ω and T, indicating that μ
is not an independent variable. Combining Eqs. (8)−(10),
the partial derivative μ with respect to T at the constant Ω
is straightforward to obtain: 

Yan-Ying Bai, Xuan-Rui Chen, Zhen-Ming Xu et al. Chin. Phys. C 47, 115105 (2023)

115105-4



Å
∂µ

∂T

ã
Ω

= − 8π2lT
(1− l2Ω2)

< 0, (15)

which  indicates  that μ is  monotonically  decreasing  with
T, and is demonstrated by the following relationship: 

µ|T=0 = 0,

T −S Ω− J

which implies that μ is identically negative. For the rotat-
ing BTZ black holes in the restricted phase space, there is
neither  an  inflection  point  nor  an  extremal  point  in  the

 and  sub-phase  spaces.  Therefore,  the  phase
transition is inexistent in the thermodynamics of the rotat-
ing BTZ black holes.

Furthermore, we consider the heat capacity of the ro-
tating BTZ black hole at a constant angular momentum J
to study its thermodynamic stability: 

CJ = T
Å
∂S
∂T

ã
J
=

S 5−64J2π4S C2

S 4+192J2π4C2 .

CJ

S , J, C

S 4 ≥ 64J2π4C2

CJ ≥ 0

CJ

CJ

Similarly,  the  heat  capacity  is  also  apparently  a  first
order  homogeneous  function  of , which  is  expec-
ted in extensive thermodynamics. Moreover, the non-neg-
ative  temperature T constrains  from  Eq.
(8),  providing  a  non-negative  heat  capacity, that  is,

,  which  is  always  true,  indicating  that  rotating
BTZ black  holes  are  thermodynamically  stable.  In  addi-
tion,  the heat capacity  explicitly depends on S,  while
implicitly  depending  on T via  Eq.  (8).  Intriguingly,  in  a
high  temperature  limit,  is  asymptotically  valued  as
follows: 

lim
T→∞

CJ ∼ 8π2lCT, (16)

C ∼ T d−2

d−2

CV ∼ T D

which  is  independent  of  the  angular  momentum J.  This
asymptotic  behavior  of  the  heat  capacity  is  consistent
with  the  conjecture  in  a d-dimensional space-
time  [31],  where  is  the  spatial  dimension  of  the
event  horizon.  Considering  Debye ’s  theory  for  ordinary
non-metallic  solid  matter  in  a  low temperature  limit,  the
heat  capacity  behaves  as  in  spatial D dimen-
sions;  these similar  behaviors  deserve more attention for
a better understanding. 

B.    The charged BTZ black hole
J = 0, Q , 0For  a  charged  BTZ black  hole  with ,  the

form of  the  metric  function  contains  a  logarithmic  term.
This feature  makes  charged  BTZ  black  holes  signific-

antly different from the charged AdS black holes in four
and  higher  dimensions,  thus  whether  there  are  extensive
thermodynamic  properties  for  the  charged  BTZ  black
holes in the restricted formalism is considered. From Eq.
(2), the metric function of the charged BTZ black hole is
as follows: 

f (r) = −8GM+
r2

l2
−4GQ2 ln

( r
l

)
, Φ(r) = −Q ln

( r
l

)
.

As indicated  before,  the  thermodynamic  variables  of  the
charged BTZ black holes are obtained as follows: 

M =
r2

0

8Gl2
− Q2

2
ln
( r0

l

)
,

T =
f ′(r0)

4π
=

r0

2πl2
− GQ2

πr0
,

S =
A
4G
=
πr0

2G
,

Similar to the previous subsection, the on-shell action of
the charged BTZ black hole is given by: [46] 

IEH = −
1
2κ

∫
d3x
√−g (R−2Λ)+

1
4µ0

∫
d3xFµνFµν,

IGHY = −
1
κ

∫
∂M

d2x
√

hK − 1
µ0

∫
∂M

d2xnrFrtAt,

Ict =
1
κ

∫
∂M

d2x
√

h(
1
l

).

By summing  all  these  contributions,  the  result  is  as  fol-
lows: 

IE = IEH+ IGHY+ Ict = β

Ç
Q2

2
ln(

r0

l
)+

Q2

2
− r2

0

8Gl2

å
,

µC = T IE = M−TS − Φ̂Q̂

T = 1/β Φ̂ =
Φ
√

G
l
, Q̂ =

Ql√
G

from which  we can  prove  with

,  where 1). Based  on  the  ex-
pressions of the thermodynamic variables, the first law of
the black  hole  thermodynamics  and  the  Euler  relation-
ship are easily verified: 

dM = TdS +Φ̂dQ̂+µdC, (17)

 

M = TS +Φ̂Q̂+µC. (18)

Here, the AdS radius l remains restricted and the gravita-

Revisiting the thermodynamics of the BTZ black hole with a variable gravitational constant Chin. Phys. C 47, 115105 (2023)

Φ̃ = Φ/l, Q̃ = Ql
I = 1

16πG

∫
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(
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115105-5



tional constant is allowed to vary.
In addition, we intend to prove that extensive and in-

tensive thermal  quantities  exist  in  this  restricted  formal-
ism of the charged BTZ black hole. According to Eq. (6),
the mass M of the charged BTZ black hole is rewritten as
follows: 

M =
S 2

16lπ2C
− Q̂2 ln [S/(4πC)]

16lC
. (19)

Other thermodynamic variables are as follows: 

T =
Å
∂M
∂S

ã
Q̂,C
= − Q̂2

16lS C
+

S
8lπ2C

, (20)

 

Φ̂ =

Å
∂M
∂Q̂

ã
S ,C
= − Q̂ ln [S/(4πC)]

8lC
, (21)

 

µ =

Å
∂M
∂C

ã
Q̂,S
=

Q̂2

16lC2 −
S 2

16π2lC2 +
Q̂2 ln [S/(4πC)]

16lC2 .

(22)

S → λS , Q̂→ λQ̂,C→ λC M→ λM
T, Φ̂,µ

T, Φ̂,µ S , Q̂,C

When , M scales  as ,
while  are not rescaled. This proves the first  order
homogeneity  of M and  the  zeroth  order  homogeneity  of

 in .
Q̂Here, we prove that S and  are extensive variables.

From Eq. (21) and Eq. (22), we obtain the following: 

µ =
Q̂2

16lC2 −
S 2

16lπ2C2 −
Q̂Φ̂
2C
. (23)

Q̂From Eq. (23), we obtain the physical expression for  

Q̂ =
4πCΦ̂l+

»
S 2+16π2lC2

(
µ+ lΦ̂2

)
π

.

S =CS Q̂Assuming , the expression for  reduces to:
 

Q̂ =CQ̂, Q̂ = 4Φ̂l+
»[
S2+16π2l

(
µ+ lΦ̂2

)]
π. (24)

S < 0Aquiring Eq. (24) into Eq. (20), except for , we ob-
tain the following expression: 

S =CS, S = 4π2lT +π
»

(Q̂2
+32π2l2T 2)/2. (25)

Q̂,S

Q̂,S

Φ̂ S , Q̂

Combining Eq. (24) and Eq. (25), the expressions of 
can be directly solved in principle.  However,  the formu-
las  are  significantly  tedious,  and  the  explicit  forms  are
unnecessary here,  thus we do not  present  these in detail.
Apparently,  can  be  determined  from  the  implicit
functions,  which  indicates  that  they  only  depend  on  the
intensive  variables T, ,  and μ.  Therefore,  are
proved to be extensive variables proportional to C.

The  Gibbs-Duhem  equation  derived  from  Eq.  (17)
and Eq. (18) is as follows: 

dµ = −Q̂dΦ̂−SdT,

Q̂ = Q̂/C S = S/C
S , Q̂, C
T, Φ̂

µ−T
Φ̂

µ(T, Φ̂

where  and  are the zeroth order homo-
geneous functions in . Note,  the  chemical  poten-
tial μ depends only on , which is determined by Eqs.
(20)−(22).  The  behaviors  of  are  considered  with  a
fixed  to  investigate  the  possible  phase  transition.  The
direct  calculation  of  the  relationship )  is  difficult,
thus  it  is  derived  with  the  help  of  the  chain  rule  of  the
partial derivative:Å

∂µ

∂T

ã
Φ̂

=

Å
∂µ

∂Q̂

ã
S

Å
∂S
∂T

ã
Φ̂

+

Å
∂µ

∂S

ã
Q̂

Ç
∂Q̂
∂T

å
Φ̂

=
4πQ̂3(1+ ln(

S
4πC

))e8lCΦ̂/Q̂

128lC3Φ̂− Q̂2(Q̂−4lCΦ̂)e16lCΦ̂/Q̂
+

S
(
π2Q̂2−2S 2

)Å
ln
Å

S
4πC

ãã3

2

Ç
64π2C3l2Φ̂2+32π2C3l2Φ2 ln

Å
S

4πC

ã
+CS 2

Å
ln
Å

S
4πC

ãã3
å .

Φ̂ < 0
2S 2 ≥ π2Q̂2Å

∂µ

∂T

ã
Φ̂

< 0

Although  the  relationship  indicated  above  appears
complicated  for  analysis,  the  fact  that  from  Eq.
(20)  and  from  the  requirement  of  the  non-
negative  temperature,  this  explicitly  demonstrates  that

.  This  implies  that  the  chemical  potential  is
monotonically decreasing with T, and there are  no swal-
low tail behaviors present as those in Van der Walls sys-

T −S Φ̂− Q̂

tems.  For  charged  BTZ  black  holes,  we  also  verify  that
neither an extremal point nor an inflection point exists in
the  or  phase space, which suggests that there
is no second order phase transition.

The heat capacity at a constant charge of the charged
BTZ black holes is given by the following:
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CQ̂ = T
Å
∂S
∂T

ã
Q̂
=

S
(
−π2Q̂2+2S 2

)
π2Q̂2+2S 2

.

T ≥ 0
2S 2 ≥ π2Q̂2

CQ̂ ≥ 0
CQ̂

S , Q̂, C

CQ̂

The  requirement  of  the  Hawking  temperature ,
that  is, ,  implies  that  the  heat  capacity  is

 and the  charged  BTZ  black  hole  is  always  ther-
modynamically  stable.  In  addition,  the  heat  capacity 
is  also a first  order homogeneous function of  as
expected.  In  a  high  temperature  asymptotic  region,  the
value of  is given by the following: 

lim
T→∞

CQ̂ ∼ 8π2lCT, (26)

Q̂which is independent of the charge  and is the same as
that of the rotating BTZ black hole. 

III.  CONCLUSION

In  this  study,  the  thermodynamic  properties  of  the
three-dimensional BTZ black holes are restudied,  motiv-
ated by the recent consideration of holographic thermody-
namics. In the previous extended phase space formalism,
we noticed certain confusing problems for the Smarr rela-
tionship of the three-dimensional BTZ black holes: 1) the
mass term and the terms related to the electric field disap-
pear, and 2) the thermodynamic potential does not satisfy
the Euler  homogeneity,  which  is  critical  for  understand-
ing the equilibrium state of thermodynamics.

(µ,C)

Q̂

T,Ω, µ

To address the aforementioned problems, we attemp-
ted  to  restrict  the  AdS  radius l as  a  constant  and  varied
the  Newtonian  constant G.  In  this  formalism,  a  pair  of
new  conjugate  variables  was  introduced  from  the
AdS/CFT correspondence.  The  resulting  thermodynam-
ics are compatible with the standard extensive thermody-
namics;  all  the  thermodynamic  quantities  are  classified
into either  extensive or  intensive.  The entropy S and an-
gular momentum J (or charge ) are proven to be extens-
ive;  thus,  they  are  simply  additive.  The  other  thermal
quantities,  are intensive. The black hole mass M is
regarded as an internal energy and is a first order homo-
geneous function of the relevant extensive variables. The
first  law  and  Euler  relationship,  as  well  as  the  Gibbs-
Duhem equation  of  the  BTZ black  holes,  were  found  to
hold simultaneously.

T −S Ω− J
T −S Φ̂− Q̂

In  addition  to  the  aforementioned,  the  phase  spaces
 and  of  the  rotating  BTZ black  holes  (or  the

phase spaces  and  of the charged BTZ black

holes), constructed by the independent variables, were in-
vestigated and  it  was  found  that  there  is  neither  an  ex-
tremum  nor  an  inflection  point.  Thus,  the  rotating  and
charged  BTZ black  holes  have  no  critical  phenomena in
this formalism, which is similar to the phase structure of
the BTZ black holes in the extended phase space. We also
found that both rotating and charged BTZ black holes are
thermodynamically  stable,  which  is  determined  by  the
non-negativity of the corresponding heat capacity.

In summary, we achieved the extensibility of the ther-
modynamic variables in the BTZ black holes by consider-
ing  Newton's  constant  variable;  in  fact,  this  approach
holds  universally  for  asymptotically  flat  or  de  Sitter
spacetimes. In a previous study [48], the variable l repres-
ents the maximum radius for a horizon that  a black hole
can reach  in  the  thermodynamic  process;  it  was  intro-
duced  by  considering  the  scale,  which  is  independent  of
the cosmological  constant.  Based  on  this,  the  thermody-
namic degrees of freedom N of a black hole is related to l
and Newton's constant G through scaling considerations,
and it  is  regarded as  the number  of  pieces  of  the size  of
the  Planck  area.  The  thermodynamics  of  non-AdS black
holes was demonstrated to belong to the standard frame-
work  of  extensive  thermodynamics  if  Newton's  constant
is allowed to vary. Furthermore, there are usually certain
coupling  parameters  in  modified  gravity  theory  models,
and  it  is  undetermined  whether  these  parameters  can  be
treated as  thermodynamic  variables.  For  the  require-
ments  regarding  the  extension  of  thermodynamics,  the
constraints that  will  be  imposed  on  these  coupling  para-
meters is a noteworthy topic that we aim to investigate in
the near future. 
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