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From masses and radii of neutron stars to EOS of nuclear matter through
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Abstract: The equation of state (EOS) of dense nuclear matter is a key factor for determining the internal structure
and properties of neutron stars. However, the EOS of high-density nuclear matter has great uncertainty, mainly be-
cause terrestrial nuclear experiments cannot reproduce matter as dense as that in the inner core of a neutron star. For-
tunately, continuous improvements in astronomical observations of neutron stars provide the opportunity to in-
versely constrain the EOS of high-density nuclear matter. Several methods have been proposed to implement this in-
verse constraint, including the Bayesian analysis algorithm, the Lindblom's approach, and so on. Neural network al-
gorithm is an effective method developed in recent years. By employing a set of isospin-dependent parametric EOSs
as the training sample of a neural network algorithm, we set up an effective way to reconstruct the EOS with relative
accuracy using a few mass-radius data. Based on the obtained neural network algorithms and according to the
NICER observations on masses and radii of neutron stars with assumed precision, we obtain the inversely con-
strained EOS and further calculate the corresponding macroscopic properties of the neutron star. The results are ba-
sically consistent with the constraint on EOS in Huth et al. [Nature 606, 276 (2022)] based on Bayesian analysis.
Moreover, the results show that even though the neural network algorithm was obtained using the finite parameter-

ized EOS as the training set, it is valid for any rational parameter combination of the parameterized EOS model.
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I. INTRODUCTION

Understanding the nature of neutron stars and determ-
ining the equation of state (EOS) of high-density asym-
metric nuclear matter are both long-standing problems in
nuclear physics and astrophysics [1—-4]. The EOS of
asymmetric nuclear matter is a key input for probing the
structure and properties of neutron stars. However, the
theoretical predictions on the EOS at supra-saturation
densities diverge broadly. Except for possible phase
transitions, the density dependence of symmetry energy is
the most uncertain part of the EOS, especially at supra-
saturation densities [3—5]. Although significant progress
has been made in probing the symmetry energy in ter-
restrial nuclear laboratories [6—8], the inability to repro-
duce the authentic high-density neutron-rich nuclear mat-
ter restricts the full and accurate understanding of sym-
metry energy and EOS at supra-saturation densities.

Fortunately, many recent groundbreaking observa-
tional discoveries from scientific facilities have led to a
new upsurge in understanding the neutron stars and EOS

of high-density asymmetric nuclear matter. For example,
the mass-radius measurement of neutron stars from the
Neutron Star Interior Composition Explorer (NICER) and
the gravitational radiation detection of binary neutron star
mergers from LIGO and Virgo have taken the under-
standing of neutron stars and EOS of the asymmetric nuc-
lear matter to a new level [9—12]. In the near future, the
Large Observatory for X-ray Timing (LOFT), the Ad-
vanced Telescope for High Energy Astrophysics
(ATHENA), the Square Kilometre Array (SKA), and Ein-
stein Telescope (ET) will provide more observations of
neutron stars when they become operational [13—17]. It is
believed that they will provide powerful insights in un-
derstanding neutron stars and the EOS.

If we regard obtaining the properties of neutron stars
from the EOS of nuclear matter as a forward method, it
can be numerically calculated according to the EOS and
TOV equations for static spherically symmetrical stars. In
combination with the inverse derivation from the mass-
radius to EOS given in Ref. [18] using enthalpy, there is a
one-to-one mapping between EOS and the mass-radius
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relation of neutron stars. That is, if a set of accurate mass-
radius observations of neutron stars is obtained, the EOS
of nuclear matter can be reversely achieved. However, at
present, there is no reliable and widely accepted method
to reversely obtain the EOS from the properties of neut-
ron stars. The purpose of this work is to try to find an ef-
fective way to reversely map the EOS of nuclear matter
through the mass-radius relations of neutron stars.

Lindblom had pioneered the inverse TOV mapping to
obtain the pressure-density sequence P(p) of the EOS
from the accurate mass-radius sequence of a neutron star
[18]. However, the reality is that accurate observation
data of the mass-radius of the neutron star is still very
rare. As more advanced algorithms are introduced, a
small amount of observation data can provide effective
constraint on the EOS. For example, Ref. [19] implemen-
ted constraints on EOS-related parameters within the
framework of Bayesian analysis. Bayesian analysis is an
algorithm for updating information by correcting existing
information based on observed events. The use of this al-
gorithm therefore requires ensuring both the correctness
of the prior probabilities and the reasonableness of the
observed events. This year, Huth et al. also used this al-
gorithm to achieve constraints on the EOS by combining
data from heavy-ion collisions (HIC) with the results
from multi-messenger astronomical observations [20].
Furthermore, a substantial amount of research using
Bayesian analysis has been performed for neutron star re-
search [21-23].

Neural networks (NN) is a branch of machine learn-
ing (ML) and a computing system inspired by biological
neural networks [24]. It has the advantages of Bayesian
analysis algorithm and polynomial fitting algorithm. Only
a few less precise observations are needed to obtain the
effective constraint through NN, which can also be used
to calculate other properties of neutron stars. In the
1990s, NN was pioneered by Clark and collaborators for
research related to nuclear physics [25—28]. This al-
gorithm is now widely used in theoretical prediction work
to improve the accuracy of nuclear mass and nuclear
charge radii measurements [29—-32]. In the field of nucle-
ar astrophysics, these algorithms have also been intro-
duced into neutron star research. For example, the in-
verse TOV mapping of NN was constructed by using the
EOS with sound velocity segmentation in Ref. [33], and
the reconstructed EOS was implemented with NN at 1 to
7 times the saturated nuclear density py~0.16 fm™ in
Ref. [34]. Krastev constructed NNs from mass-radius and
mass-tidal deformations to symmetry energy [35], and
NN from nuclear parameters to neutron star properties
was constructed in Ref. [36]. Additionally, the mapping
from X-ray spectra to EOS parameters was achieved us-
ing NN in Ref. [37].

Although much of the research using NN has given
exciting results, many questions remain unsolved, for ex-

ample, the plausibility of the symmetry energy paramet-
ers of the EOS after noise addition, the implementation of
the NN prediction function and its general applicability,
and the validation of its effectiveness. In this work, we
construct a new NN based on the parametric EOS, which
can be efficiently implemented for any combination of
parameters satisfying terrestrial experiments and multi-
messenger astronomical observations with a small num-
ber of mass-radius relations to inverse TOV mapping.

This paper is organized as follows. In Sec. II, we
briefly review the isospin-dependent parametric EOS and
the basic formula for calculating the properties of neut-
ron stars. The NN implementation of the inverse TOV
mapping is presented in Sec. III. NN combined with
NICER observational constraints are presented in Sec.
IV. The summary and outlook are presented in Sec. V.

Unless otherwise stated, in the formulae, we use the
gravitational units (G =c =1).

II. ISOSPIN-DEPENDENT PARAMETRIC EOS
AND THE FUNDAMENTAL FORMULA OF
NEUTRON STARS

A. Isospin-dependent parametric EOS

Implementing a NN for inverse TOV mapping re-
quires a large number of EOS as training samples.
Moreover, these EOS also need to meet the range of nuc-
lear parameters as much as possible, such as L, Ky, etc.
The isospin-dependent parametric EOS can satisfy both
the need to generate a large number of EOS and the ra-
tionalization of nuclear parameters.

For asymmetric nuclear matter, the energy per nucle-
on can be expanded by isospin asymmetry [2, 3]

E(p,8) ~ Eg(p) + Eqym (p) 6%, @)

where 6= (p,—pp) / (pa+pp) is the isospin asymmetry.
The first term on the right side E,(p) is usually referred
to as the energy of symmetric nuclear matter, and the
second term Egm () is referred to as the symmetry en-
ergy, which has the physical meaning of the energy dif-
ference per nucleon between asymmetric nuclear matter
and pure neutron matter.

Usually, the two terms on the right side in Eq. (1) can
be expanded at the saturation density p, [24, 38]

Folo) = Eotpo)+ 0 (220) o o (2200)
0(p)=Eolpo) + {5 6\ 3, )

Eqym (0) = Esym (po) + L (%)
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Constrained by terrestrial nuclear experiments, the
most probable values of the parameters in the above
equations are as follows: L=58.7+28.1 MeV, —400<
Kym <100 MeV, -200 < Joym <800 MeV, -300<Jp<
400 MeV, K, =240+20MeV, Ey,(po) =31.7+3.2 MeV
[39—43]. It is worth pointing out that in recent years,
PREX-II has given higher L values (L=106+37 MeV
[8]). This result is also considered later in this work.

The pressure of the system can be calculated numeric-
ally from

,d(E/p)

P(p,6)=p &

“)

To construct the EOS in the entire density range, the
NV EOS model [44] and BPS EOS model [45] are used
for the inner crust and outer crust, respectively.

B. Fundamental formula of statically spherically
symmetric neutron stars

In this work, neutron stars are considered to be isol-
ated, non-rotating, and statically spherically symmetric.
The Tolman-Oppenheimer-Volkoff (TOV) equations
consist of the equation of hydrostatic equilibrium [46, 47]

dj [m (r)+ 47rr3P(r)] [p (rn+P (r)}

ar rir=2m(r)] ’ ©)

and

dm(r)
dr

=4nr’p(r). 6)

The external boundary condition of the star is as fol-
lows: p = p=0. Given the center density of the neutron
star, it can be solved layer by layer from the interior to
the exterior of the star using the method of solving high-
precision initial value problems.

Tidal deformation of neutron star is an EOS-depend-
ent property, which can be measured through gravitation-
al wave events such as GW170817 . In linear order, the
tidal deformation A is defined as [48]

Qij = —Agl‘j, (7)

where Q;; and &;; represent the induced quadrupole mo-
ment and the static tidal field, respectively. The second
tidal Love number k, is defined as

ky = 2 AR, (8)

which can be solved together with the TOV equation [49,
50].

III. NEURAL NETWORK IMPLEMENTATION OF
INVERSE TOV MAPPING

To clearly demonstrate the process of implementing
an NN for inverse TOV mapping, we draw the flow chart
as shown in Fig. 1. The first step requires the provision of
a relatively complete training set. After determining the
range of symmetry energy parameters, the massive EOS
(output of NN) is generated by the method in Sec. II.A,
while the corresponding mass-radius points (input of NN)
are calculated using the TOV equation. The training set
of NN is filtered by astronomical observations. In the
second step, the training set is substituted into the initial-
ized NN training to examine the loss. The key paramet-
ers of NN are adjusted until the loss converges. The final
step is to find the minimum number of neurons at the in-
put, which involves comparing the relative errors under
different mass-radius point conditions. The different
mass-radius points come from the non-training sample,
which is the EOS in the non-training set and the corres-
ponding mass-radius (consistent with the parameter range
and filtering in the first step).

The most significant prerequisite for the implementa-
tion of this algorithm is the training sample processing.
Four groups of variable parameters are used to generate
training samples to cover an EOS range that is as large as
possible. The variable parameter space is as follows:
30 < L <143 MeV, —400 < Kyym < 100 MeV, =200 < Jyy <
800 MeV, 300 < Jo < 400 MeV, K, = 240 MeV, Eqyp, (00) =
31.7 MeV [39-43]. It is especially worth noting that the
slope L range was developed by combining terrestrial [8]
and astrophysical data. To obtain preliminary training
samples, we generate EOS (Sec. II.A) by taking points at
equal intervals in the above parameter interval and then
solve the corresponding M-R with the TOV equation.
Moreover, in order to make the output more reasonable,
we used astronomical observation results during the
sample generation stage: My >2.14 My [51], As=
190+ , 1.44+0.15 M,, [9] corresponding to [11.2, 13.3]
km, 2.08 +0.07 M,, [10] corresponding to [12.2, 16.3] km.
Similarly to Ref. [52], considering the causality condi-
tion (¢, < ¢) and the stability condition (dp/dp > 0), if the
maximum mass filter is then added, the sample size is
comparable to that after the screening of astronomical ob-
servations as described above, with a limited improve-
ment in the generalization ability. In the sample pro-
cessing stage, due to the randomness of observations, we
randomly sampled the mass-radius sequences over the en-
tire mass range. Note that because it is more difficult to
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Select the range of parameters
(such as L — Ky, — Ko — Jo)

Calculation of EOS
with parametric EOS

Filtering by astronomical
observations

Calculation of M-R
using TOV equation

Initialized NN

Adjusting the parameters of NN

Loss convergence?

‘ Reduction of neurons at the input ‘

Non-training set samples }

Fig. 1.

form low-mass neutron stars, as in Ref. [52], the
sampling point is set to be greater than 1 M,. However,
considering the theoretical lower mass limit of neutron
stars that can reach 0.1 My [53], as well as recent obser-
vations of the HESS J1731-347 [54], a wider mass
sampling interval was adopted. The final sample size in-
volved in the NN is approximately 880000, where M-R
points are used as input and P-p points are used as output.

The NN was initialized with reference to the frame-
work of Ref. [19] and [35] and according to the back-
ground of our training set. By adjusting the relevant para-
meters, such as the number of layers, the optimization
function, the epoch size, etc., the loss convergence of the
NN is achieved. We finalized the NN architecture as
shown in Table 1. The 80 neurons in the input layer
means that the NN can provide accurate predictions un-
der the condition of 40 pairs of (M,R) points. The other
key parameters for this NN are shown in Appendix A,
and the predicted results for the different input points are
shown in Appendix B.

To verify the accuracy, we used several mass-radius
sequences of the EOS to substitute into this NN for pre-
diction. In particular, we use APR3 and APR4 to test the
effectiveness of this NN for non-parameter EOS.

Figure 2 shows the NN predictions for three adopted
EOS. It is shown that our NN method achieves a relat-
ively accurate prediction function with approximately 40
mass-radius points as input. The solid black line for the
(a) panel equation of state is randomly generated and sub-
stituted into Eq. (5) to give the solid black line for the
mass-radius sequence. Additionally, we also test some

‘ Comparative Relative Error ‘

End

(color online) Flowchart of inverse TOV mapping neural network implementation.

Table 1. Architecture of neural network.

Layer Number of neurons Activation function

O(Input) 80 N/A

1 100 ReLU

2 300 ReLU

3 400 ReLU

4 400 ReLU

5 400 ReLU

6 300 ReLU
7(Output) 182 tanh

EOS other than the parameterized EOS and find that
some of them can also be predicted well, as shown in (b)
and (c) in Fig. 2 for APR3 and APR4 EOS. This result
means that our NN method will no longer be limited to
parametric EOS even though we use only parametric
EOS as training samples.

For comparison with the results in Ref. [35], we also
probe the output of NN by setting the parameters of EOS
in the L — Kym panel, where Jy = Jym =0, and L and Ky,
take a range of [30, 90] MeV and [-400, 100] MeV, re-
spectively. Using the same sample generation process as
for the L—Jy—Jym—Kym panel, the sample size at this
point is approximately 8000. Figure 3 shows the NN pre-
dictions for the randomly selected test EOS with the para-
meters limited in the previously mentioned range. We try
to use as few input samples as possible to achieve the pre-
diction function. Here, the prediction function for the full
density segment is implemented in the NN with 4 rows of
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(color online) The EOS predictions of NN from 40 sampled points for the L - Jy - Jym — Ksym panel, where the solid black line

represents the original EOS, and the blue dots denote the NN predictions. The three sample EOSs are, (a) parametric EOS with ran-
domly generated parameters as L =40.5 MeV, Ky, = —200.5 MeV, Jym =320 MeV, Jo =110 MeV, Ky =240 MeV, Egm (o) =31.7 MeV, (b)
APR3 EOS, and (c) APR4 EOS. The inset shows the NN sampling from the mass-radius sequence. The lower panels show the relative

error of the fitting.
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Fig. 3.  (color online) The EOS predictions of NN from 4
sampled points for the L-Kym panel (The EOS parameters
are as follows: L=40.5MeV, Ky, =80.5MeV, Jym=0MeV,
Jo=0MeV, Ko=240MeV, Egym(po)=31.7MeV). The solid
black line indicates the original EOS from which the sample

Y=Y el Y

points shown as the red dots were generated. The blue dots
represent the EOS data output by NN. The inset shows the NN
sampling from the mass-radius sequence (Greater than 1 Mo).

mass-radius sequences as input (the data of the input is
shown in Table 2). Since the low-dimensional parameter
space is simpler compared to the high-dimensional, e.g.,
the same (M, R) point corresponds to fewer EOS, only
four output points and some parameters of the NN in the
simplified Table 1 are needed to implement the function.
The above results show that our NN design is more suit-
able for inverse TOV mapping under isospin-dependent
parametric EOS conditions.

Compared to Fig. 2, Fig. 3 demonstrates a greater ac-
curacy of the NN predictions after reducing the two para-

Table 2. Mass-radius sampling points for Fig. 3.
Mass (Mg) Radius/km
1.650030 11.8838
1.916370 11.6289
2.046519 11.3741
2.201511 10.3368

meter dimensions. The fact that other different kinds of
the EOS can be valid suggests that this NN prediction has
certain universality.

IV. COMBINING NICER OBSERVATIONS TO
VERIFY THE VALIDITY OF NN

To validate the predictions of the inverse TOV map-
ping-type NNs, prediction EOS from NICER observa-
tions are shown and discussed in this section within the
parametric EOS framework as well as by adopting the
results of Refs. [12] and [21]. Furthermore, due to the in-
sufficient number of observations at the neutron star
mass-radius, the following approach was adopted to satis-
fy the NN input points: 1. The EOS was generated in
batch with parametric EOS within the range of nuclear
parameters (L, K;, J;, Jo) mentioned in Sec. III; 2. One
EOS that fits near the most probable point of the two
NICER observations (Rjume =13.0km [55], Raosme =
13.7 km [56]) was taken; 3. Forty points were randomly
taken on the M-R curve corresponding to this EOS.
However, for the real situation, 40 precise (M,R) observa-
tions from different neutron stars are necessary for NN
input. It is expected that such accurate and sufficient ob-
servations will be available in the near future.

The NN-based predicted EOS together with further
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calculated dimensionless tidal deformations as a function
of stellar mass are displayed in Fig. 4 (a). To demon-
strate the effect of NN, we also plot the constraint on
EOS from Huth et al. [21] and A of canonical neutron
star (M = 1.4M,,) from GW170817 [12]. It is shown that
the predictions obtained under the assumption of observa-
tional accuracy prefer relatively stiff EOS at high density,
which is basically in agreement with the results of Ref.
[21]. Further calculation of the predicted EOS shows that
the canonical neutron star has a dimensionless tidal de-
formation of A4 ~ 507, indicating a high tidal deformab-
ility. From Fig. 4 (b), we can see that when the stellar
mass is less than 1.6 Mg, the tidal deformability de-
creases relatively quickly as the mass increases, and when
the mass is higher than 1.6 M., the tidal deformability
decreases relatively slowly with the increase in mass. For
massive neutron stars with M =2.0M,, its tidal deforma-
tion is A, ~ 51, which is far smaller than that of canonic-
al neutron stars.

V. SUMMARY AND OUTLOOK

The NN algorithms for implementing the inverse
mapping TOV equation are constructed by employing the
parametric EOS as the training sample. Through the prac-
tical application of the obtained NN algorithm, we obtain
the following results.

(i) We implemented the inverse constraint EOS of
NN in 4-dimensional parameter space (L—Jy—Jym—
Kym) and 2-dimensional parameter space (L—Kgm).
About 40 mass-radius points were required to output
higher precision EOS wunder the condition that
L—Jy—Jym—Kgym is a variable. Four mass-radius points
were required to output a higher precision EOS with
L—- K as the variable.

T T T T T T T T T T T
10?

prediction

P (MeV-fm3)
3

10°

20 25 3.0
P/po

Fig. 4.

(i1) The EOS based on the obtained NN algorithm and
the two sets of NICER observational values with as-
sumed precision was predicted. Similar to the results
from other method, the EOS constrained by the NICER
observation and NN was relatively stiff, and the corres-
ponding tidal deformability of canonical neutron star was
relatively high. Our NN predictions were basically con-
sistent with the results of Huth et al. [21].

Despite the generalisation ability of the proposed al-
gorithm, it is difficult for the output of the NN to ensure
credible results when the EOS is other than the isospin-
dependent parametric EOS. To fill this gap, more types of
EOSs need to be added to the training samples in the fu-
ture. We believe that by combining precise observations
from multiple sources, NN will be a promising tool for
achieving more precise constraints on the EOS of nuclear
matter.

APPENDIX A: NEURAL NETWORK IMPLE-
MENTATION

NN, one of the common algorithms in ML, is now
used in almost every aspect of scientific research and en-
gineering [57]. Based on the universal approximation the-
orem, NN can implement complex nonlinear mappings
[58, 59]. Its construction is mainly divided into an input
layer, a hidden layer, and an output layer. Each neuron
can be treated as a container of numbers. Similar to the
transmission of electrical signals between synapses, neur-
ons use numbers as signals between them. Starting from
the input layer, each layer of neurons goes through the
following process between each other

Z=wiai + -+ wd + b (A1)

1500 T
[ prediction

1200 [ —eo— GW 170817 1

900 |- .
L (b) 4

600 |- ]

300 |- ]
ol by by b by
08 1.0 12 1.6 1.8 20

14
M (Mg)

(color online) NN predictions combining the most probable points of the two NICER observations. (a) The red curve indicate

the EOS result predicted by NN, and the blue area represents the constraint of EOS from Ref. [21] in 95% (light) and 68% (dark) cred-
ible intervals. (b) The red curve represents the dimensionless tidal deformation and stellar mass calculated using the EOS from (a). The
constraint on the A of canonical neutron star from GW170817 [12] is also presented.
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where w represents the weight, / represents the serial
number of layers, and b represents the bias value [60].
The calculated z is then substituted into the activation
function to obtain the value of the output of the neuron to
the next layer:

d=f (). (A2)

where f(x) is called the activation function and is usually
a Sigmoid or ReLU function, the latter being adopted in
this work. When summarizing the operations of the whole
layer of neurons, we can obtain the following expression:

0
Woo Woi 0 Won a, by
0
Wio Wii1 0 Win ay b,
f ) ) . o+ =output.
0 b
Wko Wk Wikn a, n
(A3)

At this point, the NN has completed one forward
propagation. We also need a metric to evaluate how well
the output compares to the true value. This type of evalu-
ation metric is called the loss function, in which we usu-

1 n
(MSE=- S,

(Y,» —2)2) method. The MSE of each batch is equivalent
to the construction drawing, guiding the optimizer to con-
tinuously adjust a huge number of weights (w) and biases
(b) in the NN. The available optimizers are Stochastic
Gradient Descent (SGD) and Adam [61], the latter being
adopted in this study.

The platform used for implementing our NN is Keras,
with Tensorflow as its backend [62, 63]. It integrates the
excellent features of Compute Unified Device Architec-
ture (CUDA) for parallel computing on GPU with
Tensorflow as the backend, thus providing a rich inter-
face. The training of the NN was performed on NVIDIA
GeForce GTX 1650, which can significantly save the
time cost of computing while implementing complex NN.
To prevent overfitting, Dropout was set to 0.3 between
layers. Furthermore, we chose an initial learning rate of
0.0003, a batch size of 500, and an epoch of 800. The
proportion of the training dataset used for the validation
dataset was 0.1. The hidden layer wasused as a fully con-
nected layer. Based on the above conditions, we de-
signed six layers of NN to achieve inverse TOV mapping.
All the data in the NN need to be normalized, which in
this study is used as (M/3, R/35) and ((log,,p)/40,
(log,,p)/20). The EOS is taken in a logarithmic order to
avoid very large gaps in the pressure magnitude between
different density intervals, which could affect the predic-
tion accuracy of the NN. For ease of calculation, both P

ally use the mean squared -error

and p are taken as logarithmic results in MeV -fm~ and
kg-m™ , respectively.

APPENDIX B: RESULTS FOR DIFFERENT INPUT
POINTS

We gradually reduce the input points after achieving
loss convergence, while improving the relevant paramet-
ers of NN. Within the conventional NN framework, most
of the improvements to achieve convergence of the NN
can only affect the convergence rate of the loss, and can-
not affect the minimum number of input points, such as
increasing the number of hidden layers. As the number of
neurons in the input layer continues to decrease, a signi-
ficant error occurs in the L—Jy— Jym — Kym panel for 35
pairs of (M,R) (see Fig. B1), while a significant error oc-
curs in the L— Ky, panel for 3 pairs of (M,R) (see Fig.
B2). It is important to note that over-concentration of

150
120 |~
o
£ 2|
>
)] L
S 60 F
o
30
0
z
E 025 |-
>- 5
> 0.00 1
0 1 2 3 4
P (P/Po)
Fig. B1.  (color online) Similar to Fig. 2 (a), but for 35

sampled points.

1000

Pl Yo} NI I I P
0 2 4 6 8 10
P/po

(color online) Similar to Fig. 3, but for 3 sampled

Fig. B2.
points.
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(M,R) sampling points affects the NN predictions. Such
sampling is a small probability event in astronomical ob-
servations.

Data Availability Statement: The main code used in
this work can be found in the Github repository
https://github.com/zhscut/NN-for-Neutron-Star.
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