2020 Vol. 44, No. 2
Display Method: |
			            2020, 44(2): 021001. doi: 10.1088/1674-1137/44/2/021001 
	   					
		        	
			        
		            	
		        
					Abstract: 
From April to July 2018, a data sample at the peak energy of the\begin{document}$ \varUpsilon \left( {4{\rm{S}}} \right)$\end{document} ![]()
![]()
\begin{document}$ 496.3 \pm 0.3 \pm 3.0)\;{\rm pb}^{-1}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			From April to July 2018, a data sample at the peak energy of the
			            2020, 44(2): 022001. doi: 10.1088/1674-1137/44/2/022001 
	   					
		        	
			        
		            	
		        
					Abstract: 
The production of\begin{document}$\varXi _{cc}^ {++}$\end{document} ![]()
![]()
\begin{document}$\sqrt{s}=13\;{\rm{TeV}}$\end{document} ![]()
![]()
\begin{document}$4  < p_{\rm{T}} <15\;{\rm{GeV}}/c$\end{document} ![]()
![]()
\begin{document}$2.0 <y <4.5$\end{document} ![]()
![]()
\begin{document}$1.7\;{\rm{fb}}^{-1}$\end{document} ![]()
![]()
\begin{document}$\varXi _{cc}^ {++}$\end{document} ![]()
![]()
\begin{document}$\varXi _{cc}^ {++} \to \varLambda _c^ +  K^-\pi^+ \pi^+$\end{document} ![]()
![]()
\begin{document}$\varLambda _c^ + $\end{document} ![]()
![]()
\begin{document}$(2.22\pm 0.27 \pm 0.29)\times 10^{-4}$\end{document} ![]()
![]()
\begin{document}$\varXi _{cc}^ {++}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The production of
			            2020, 44(2): 023101. doi: 10.1088/1674-1137/44/2/023101 
	   					
		        	
			        
		            	
		        
					Abstract: 
The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is investigated in the Vaidya-AdS geometry. We determine numerically the Hubeny-Rangamani-Takayanagi (HRT) surface, which may be a hemi-torus or two disks, depending on the ratio of the inner radius to the outer radius of the annulus. More importantly, for some fixed ratio of the two radii, the annulus undergoes a phase transition, or a double phase transition, during thermalization from a hemi-torus to a two-disk configuration, or vice versa. The occurrence of various phase transitions is determined by the ratio of the two radii of the annulus. The rate of entanglement growth is also investigated during the thermal quench. The local maximal rate of entanglement growth occurs in the region with a double phase transition. Finally, if the quench process is sufficiently slow, which may be controlled by the thickness of the null shell, the region with a double phase transition vanishes.
		       
		        
		        
		        
			  
			The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is investigated in the Vaidya-AdS geometry. We determine numerically the Hubeny-Rangamani-Takayanagi (HRT) surface, which may be a hemi-torus or two disks, depending on the ratio of the inner radius to the outer radius of the annulus. More importantly, for some fixed ratio of the two radii, the annulus undergoes a phase transition, or a double phase transition, during thermalization from a hemi-torus to a two-disk configuration, or vice versa. The occurrence of various phase transitions is determined by the ratio of the two radii of the annulus. The rate of entanglement growth is also investigated during the thermal quench. The local maximal rate of entanglement growth occurs in the region with a double phase transition. Finally, if the quench process is sufficiently slow, which may be controlled by the thickness of the null shell, the region with a double phase transition vanishes.
			            2020, 44(2): 023102. doi: 10.1088/1674-1137/44/2/023102 
	   					
		        	
			        
		            	
		        
					Abstract: 
The constituent quark model is used to compute the ground and excited state masses of QQQ baryons containing either c or b quarks. The quark model parameters previously used to describe the properties of charmonium and bottomonium states were used in this analysis. The non-relativistic three-body bound state problem is solved by means of the Gaussian expansion method which provides sufficient accuracy and simplifies the subsequent evaluation of the matrix elements. Several low-lying states with quantum numbers\begin{document}$ J^P=\frac{1}{2}^\pm, \frac{3}{2}^\pm, \frac{5}{2}^\pm$\end{document} ![]()
![]()
\begin{document}$ \frac{7}{2}^+$\end{document} ![]()
![]()
		       
		        
		        
			  
			The constituent quark model is used to compute the ground and excited state masses of QQQ baryons containing either c or b quarks. The quark model parameters previously used to describe the properties of charmonium and bottomonium states were used in this analysis. The non-relativistic three-body bound state problem is solved by means of the Gaussian expansion method which provides sufficient accuracy and simplifies the subsequent evaluation of the matrix elements. Several low-lying states with quantum numbers
			            2020, 44(2): 023103. doi: 10.1088/1674-1137/44/2/023103 
	   					
		        	
			        
		            	
		        
					Abstract: 
We study the contributions of intermediate bottomonium-like\begin{document}$Z_b$\end{document} ![]()
![]()
\begin{document}$\Upsilon(4S) \to h_b(1P,2P) \pi^+\pi^-$\end{document} ![]()
![]()
\begin{document}$Z_b$\end{document} ![]()
![]()
\begin{document}$_{\Upsilon(4S) \to h_b(1P)\pi^+\pi^-}\simeq\big(1.2^{+0.8}_{-0.4}\times10^{-6}\big)$\end{document} ![]()
![]()
\begin{document}$\big( 0.5^{+0.5}_{-0.2}\times10^{-6}\big)$\end{document} ![]()
![]()
\begin{document}$ {{BR}}_{\Upsilon(4S) \to h_b(2P)\pi^+\pi^-}\simeq \big(7.1^{+1.7}_{-1.1}\times10^{-10}\big)$\end{document} ![]()
![]()
\begin{document}$\big( 2.4^{+0.2}_{-0.1}\times10^{-10}\big)$\end{document} ![]()
![]()
\begin{document}$Z_b$\end{document} ![]()
![]()
\begin{document}$\Upsilon(4S) \to h_b(1P) \pi\pi$\end{document} ![]()
![]()
\begin{document}$\Upsilon(4S) \to \Upsilon(1S,2S) \pi\pi$\end{document} ![]()
![]()
\begin{document}$\psi(3S,4S) \to h_c(1P)\pi\pi$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We study the contributions of intermediate bottomonium-like
			            2020, 44(2): 023104. doi: 10.1088/1674-1137/44/2/023104 
	   					
		        	
			        
		            	
		        
					Abstract: 
We study the semileptonic decays\begin{document}$B_c^-  \to (\eta_c, J/\psi) l ^- \bar{\nu}_l$\end{document} ![]()
![]()
\begin{document}$B_c$\end{document} ![]()
![]()
\begin{document}$B_c \to (\eta_c,J/\psi) l \bar{\nu}$\end{document} ![]()
![]()
\begin{document}$R_{\eta_c}, R_{ J/\psi}$\end{document} ![]()
![]()
\begin{document}$P_{\tau}$\end{document} ![]()
![]()
\begin{document}$R_{\eta_c}=0.34\pm 0.01, R_{J/\psi}=0.28\pm 0.01$\end{document} ![]()
![]()
\begin{document}$P_{\tau}(\eta_c) = 0.37\pm 0.01$\end{document} ![]()
![]()
\begin{document}$P_{\tau}(J/\psi) = -0.55 \pm 0.01$\end{document} ![]()
![]()
\begin{document}$R_{\eta_c}=0.31\pm 0.01$\end{document} ![]()
![]()
\begin{document}$ R_{ J/\psi}=0.27\pm 0.01$\end{document} ![]()
![]()
\begin{document}$P_{\tau}( \eta_c) =  0.36 \pm 0.01$\end{document} ![]()
![]()
\begin{document}$P_{\tau}( J/\psi) = -0.53\pm 0.01$\end{document} ![]()
![]()
\begin{document}$R_{ J/\psi}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We study the semileptonic decays
			            2020, 44(2): 023105. doi: 10.1088/1674-1137/44/2/023105 
	   					
		        	
			        
		            	
		        
					Abstract: 
Dark sector may couple to the Standard Model via one or more mediator particles. We discuss two types of mediators: the dark photon\begin{document}$ A^{\prime} $\end{document} ![]()
![]()
\begin{document}$ \phi $\end{document} ![]()
![]()
\begin{document}$ e^{+} e^{-} \rightarrow q \bar{q} A^{\prime} $\end{document} ![]()
![]()
\begin{document}$ e^{+} e^{-} \rightarrow q \bar{q} \phi $\end{document} ![]()
![]()
\begin{document}$ q = u,\; d,\; c,\; s $\end{document} ![]()
![]()
\begin{document}$ A^{\prime} $\end{document} ![]()
![]()
\begin{document}$ e^{+} e^{-} $\end{document} ![]()
![]()
\begin{document}$ \sqrt{s} = 91.2 $\end{document} ![]()
![]()
\begin{document}$ \sqrt{s} = $\end{document} ![]()
![]()
\begin{document}$ < m_{A^{\prime}} < $\end{document} ![]()
![]()
\begin{document}$ S/\sqrt{B} = $\end{document} ![]()
![]()
\begin{document}$ \sigma $\end{document} ![]()
![]()
\begin{document}$ \sigma $\end{document} ![]()
![]()
\begin{document}$ \sigma $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Dark sector may couple to the Standard Model via one or more mediator particles. We discuss two types of mediators: the dark photon
			            2020, 44(2): 024001. doi: 10.1088/1674-1137/44/2/024001 
	   					
		        	
			        
		            	
		        
					Abstract: 
Elastic scattering of 10Be on a 208Pb target was measured at\begin{document}$ E_{\rm Lab} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Elastic scattering of 10Be on a 208Pb target was measured at
			            2020, 44(2): 024002. doi: 10.1088/1674-1137/44/2/024002 
	   					
		        	
			        
		            	
		        
					Abstract: 
The level structure in neutron-deficient nucleus 91Ru was investigated via the 58Ni (36Ar, 2p1n\begin{document}$\gamma $\end{document} ![]()
![]()
\begin{document}$\gamma $\end{document} ![]()
![]()
\begin{document}$N=47$\end{document} ![]()
![]()
\begin{document}$(p_{3/2},f_{5/2},p_{1/2},g_{9/2})$\end{document} ![]()
![]()
\begin{document}$\pi(g_{9/2})^{-2} \nu(g_{9/2})^{-1}$\end{document} ![]()
![]()
\begin{document}$\nu (g_{9/2})^{-3}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The level structure in neutron-deficient nucleus 91Ru was investigated via the 58Ni (36Ar, 2p1n
			            2020, 44(2): 024101. doi: 10.1088/1674-1137/44/2/024101 
	   					
		        	
			        
		            	
		        
					Abstract: 
We investigate the mass spectrum of the\begin{document}$ ss \bar s \bar s $\end{document} ![]()
![]()
\begin{document}$ ss \bar s \bar s $\end{document} ![]()
![]()
\begin{document}$ X(2239) $\end{document} ![]()
![]()
\begin{document}$ e^+e^- \to K^+K^- $\end{document} ![]()
![]()
\begin{document}$ 1^{--} $\end{document} ![]()
![]()
\begin{document}$ ss \bar s \bar s $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We investigate the mass spectrum of the
			            2020, 44(2): 024102. doi: 10.1088/1674-1137/44/2/024102 
	   					
		        	
			        
		            	
		        
					Abstract: 
The coupled\begin{document}$ \Lambda\Lambda nn-\Xi^- pnn $\end{document} ![]()
![]()
\begin{document}$ \Lambda\Lambda nn $\end{document} ![]()
![]()
\begin{document}$ \Lambda\Lambda nn - \Xi^- pnn $\end{document} ![]()
![]()
\begin{document}$ \Lambda\Lambda nn $\end{document} ![]()
![]()
\begin{document}$ \Xi^- t $\end{document} ![]()
![]()
\begin{document}$ \Lambda\Lambda nn $\end{document} ![]()
![]()
		       
		        
		        
			  
			The coupled
			            2020, 44(2): 024103. doi: 10.1088/1674-1137/44/2/024103 
	   					
		        	
			        
		            	
		        
					Abstract: 
The averaged jet charge characterizes the electric charge of the initiating parton and provides a powerful tool to distinguish quark jets from gluon jets. We predict, for the first time, the medium modification of the averaged jet charge in the heavy-ion collisions at the LHC, where jet productions in p+p collisions are simulated by PYTHIA6, and the parton energy loss in QGP is calculated with two Monte Carlo models of jet quenching: PYQUEN and JEWEL. We found that the distribution of averaged jet charge is significantly suppressed by initial state isospin effects due to the participation of neutrons with zero electric charge during nuclear collisions. The considerable enhancement of the averaged jet charge in central Pb+Pb collisions is observed relative to peripheral collisions, since the jet quenching effect is more pronounced in central collisions. The distinct feature of the averaged jet charge between quark and gluon jets, along with the sensitivity of medium modifications on the jet charge to flavor dependence of the parton energy loss, could be very useful to discriminate the energy loss pattern between quark and gluon jets in heavy-ion collisions.
		       
		        
		        
		        
			  
			The averaged jet charge characterizes the electric charge of the initiating parton and provides a powerful tool to distinguish quark jets from gluon jets. We predict, for the first time, the medium modification of the averaged jet charge in the heavy-ion collisions at the LHC, where jet productions in p+p collisions are simulated by PYTHIA6, and the parton energy loss in QGP is calculated with two Monte Carlo models of jet quenching: PYQUEN and JEWEL. We found that the distribution of averaged jet charge is significantly suppressed by initial state isospin effects due to the participation of neutrons with zero electric charge during nuclear collisions. The considerable enhancement of the averaged jet charge in central Pb+Pb collisions is observed relative to peripheral collisions, since the jet quenching effect is more pronounced in central collisions. The distinct feature of the averaged jet charge between quark and gluon jets, along with the sensitivity of medium modifications on the jet charge to flavor dependence of the parton energy loss, could be very useful to discriminate the energy loss pattern between quark and gluon jets in heavy-ion collisions.
			            2020, 44(2): 024104. doi: 10.1088/1674-1137/44/2/024104 
	   					
		        	
			        
		            	
		        
					Abstract: 
Considering the magnetic field response of the QGP medium, we perform a systematical study of the chiral magnetic effect (CME), and make a comparison with the experimental results for the background-subtracted correlator H at the energies of the RHIC Beam Energy Scan (BES) and the LHC energy. The CME signals from our computations show a centrality trend and beam energy dependence that are qualitatively consistent with the experimental measurements of the charge dependent correlations. The time evolution of the chiral electromagnetic current at the RHIC and LHC energies is systematically studied. The dependence of the time-integrated current signal on the beam energy\begin{document}$ \sqrt{s}$\end{document} ![]()
![]()
\begin{document}$ \sqrt{s} \approx 39$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Considering the magnetic field response of the QGP medium, we perform a systematical study of the chiral magnetic effect (CME), and make a comparison with the experimental results for the background-subtracted correlator H at the energies of the RHIC Beam Energy Scan (BES) and the LHC energy. The CME signals from our computations show a centrality trend and beam energy dependence that are qualitatively consistent with the experimental measurements of the charge dependent correlations. The time evolution of the chiral electromagnetic current at the RHIC and LHC energies is systematically studied. The dependence of the time-integrated current signal on the beam energy
			            2020, 44(2): 024105. doi: 10.1088/1674-1137/44/2/024105 
	   					
		        	
			        
		            	
		        
					Abstract: 
Based on the Froissart-Martin theorem, the Regge theory and the possible Odderon exchange, the total cross-section\begin{document}$\sigma_{\rm tot}$\end{document} ![]()
![]()
\begin{document}$\rho$\end{document} ![]()
![]()
\begin{document}$pp$\end{document} ![]()
![]()
\begin{document}$\bar{p}p$\end{document} ![]()
![]()
\begin{document}$pp$\end{document} ![]()
![]()
\begin{document}$\bar{p}p$\end{document} ![]()
![]()
\begin{document}$\alpha_{\rm O}(0)=0.5$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Based on the Froissart-Martin theorem, the Regge theory and the possible Odderon exchange, the total cross-section
			            2020, 44(2): 024106. doi: 10.1088/1674-1137/44/2/024106 
	   					
		        	
			        
		            	
		        
					Abstract: 
The\begin{document}$ \Delta $\end{document} ![]()
![]()
\begin{document}$ N\Delta \to NN $\end{document} ![]()
![]()
\begin{document}$ \Delta $\end{document} ![]()
![]()
\begin{document}$ \Delta $\end{document} ![]()
![]()
\begin{document}$ \sigma_{N\Delta\to NN} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The
			            2020, 44(2): 025101. doi: 10.1088/1674-1137/44/2/025101 
	   					
		        	
			        
		            	
		        
					Abstract: 
We discuss the effects of quantum fluctuations spewed by a black hole on its deflection angle. The Gauss-Bonnet theorem (GBT) is exploited with quantum corrections through the extended uncertainty principle (EUP), and the corresponding deflection angle is obtained. Moreover, we have attempted to broaden the scope of our work by subsuming the effects of plasma medium on the deflection angle. To demonstrate the degree of difference, the acquired results are compared with the prevailing findings.
		       
		        
		        
		        
			  
			We discuss the effects of quantum fluctuations spewed by a black hole on its deflection angle. The Gauss-Bonnet theorem (GBT) is exploited with quantum corrections through the extended uncertainty principle (EUP), and the corresponding deflection angle is obtained. Moreover, we have attempted to broaden the scope of our work by subsuming the effects of plasma medium on the deflection angle. To demonstrate the degree of difference, the acquired results are compared with the prevailing findings.
ISSN 1674-1137 CN 11-5641/O4
Original research articles, Ietters and reviews Covering theory and experiments in the fieids of
- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology
Author benefits
- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles
News
	
- Chinese Physics C Outstanding Reviewer Award 2023
- Impact factor of Chinese Physics C is 3.6 in 2022
- 2022 CPC Outstanding Reviewer Awards
- The 2023 Chinese New Year-Office closure
- ãChinese Physics CãBEST PAPER AWARDS 2022
Cover Story
    
- Cover Story (Issue 9, 2025): Precise measurement of Ïc0 resonance parameters and branching fractions of Ïc0,c2âÏï¼Ïï¼/ K+K-
- Cover Story (Issue 8, 2025) A Novel Perspective on Spacetime Perturbations: Bridging Riemannian and Teleparallel Frameworks
- Cover Story (Issue 7, 2025) Evidence of the negative parity linear chain states in 16C
- Cover Story (Issue 1, 2025) Comments on Prediction of Energy Resolution inthe JUNO Experiment
- Cover Story (Issue 12, 2024) | Doubly heavy meson puzzle: precise prediction of the mass spectra and hadronic decay with coupled channel effects to hunt for beauty-charm family
















 
    	     
		    

