2022 Vol. 46, No. 9
Display Method: |
			            2022, 46(9): 093001. doi: 10.1088/1674-1137/ac74a9 
	   					
		        	
			        
		            	
		        
					Abstract: 
A search for the dimuon decay of the Standard Model Higgs boson is performed using Monte Carlo simulated events to mimic data corresponding to an integrated luminosity of 5.6 ab\begin{document}$ ^{-1} $\end{document} ![]()
![]()
\begin{document}$ e^{+}e^{-} $\end{document} ![]()
![]()
\begin{document}$ \sqrt{s}=240 $\end{document} ![]()
![]()
\begin{document}$ e^{+}e^{-}\to ZH,\, $\end{document} ![]()
![]()
\begin{document}$ Z\to q\bar{q},\,H\to {{\mu^+\mu^-}} $\end{document} ![]()
![]()
\begin{document}$ \sigma $\end{document} ![]()
![]()
\begin{document}$ H\to\mu\mu $\end{document} ![]()
![]()
\begin{document}$ ^{-1} $\end{document} ![]()
![]()
\begin{document}$ \sigma $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			A search for the dimuon decay of the Standard Model Higgs boson is performed using Monte Carlo simulated events to mimic data corresponding to an integrated luminosity of 5.6 ab
			            2022, 46(9): 093101. doi: 10.1088/1674-1137/ac6daa 
	   					
		        	
			        
		            	
		        
					Abstract: 
Exclusive vector meson production is an excellent probe for describing the structure of protons. In this study, based on the dipole model, the differential cross sections, total cross sections, and ratios of the longitudinal to transverse cross section of the\begin{document}$ J/\psi $\end{document} ![]()
![]()
\begin{document}$ \rho^0 $\end{document} ![]()
![]()
\begin{document}$ Q^2 $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Exclusive vector meson production is an excellent probe for describing the structure of protons. In this study, based on the dipole model, the differential cross sections, total cross sections, and ratios of the longitudinal to transverse cross section of the
			            2022, 46(9): 093102. doi: 10.1088/1674-1137/ac6dc6 
	   					
		        	
			        
		            	
		        
					Abstract: 
Recently, scientists have achieved significant progress in experiments searching for excited\begin{document}$ \Xi_{b} $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b} $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b}(6072) $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b}(6146) $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b}(6152) $\end{document} ![]()
![]()
\begin{document}$ \Xi_{b}(6227) $\end{document} ![]()
![]()
\begin{document}$ \Xi_{b}(6100) $\end{document} ![]()
![]()
\begin{document}$ \Xi_{b}(6327) $\end{document} ![]()
![]()
\begin{document}$ \Xi_{b}(6333) $\end{document} ![]()
![]()
\begin{document}$ 1D $\end{document} ![]()
![]()
\begin{document}$ 2D $\end{document} ![]()
![]()
\begin{document}$ \Xi_{b} $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b} $\end{document} ![]()
![]()
\begin{document}$ (L_{\rho},L_{\lambda})=(0,2) $\end{document} ![]()
![]()
\begin{document}$ (2,0) $\end{document} ![]()
![]()
\begin{document}$ (1,1) $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b}(6146) $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b}(6152) $\end{document} ![]()
![]()
\begin{document}$ \Xi_{b}(6327) $\end{document} ![]()
![]()
\begin{document}$ \Xi_{b}(6333) $\end{document} ![]()
![]()
\begin{document}$ 1D $\end{document} ![]()
![]()
\begin{document}$ (L_{\rho},L_{\lambda})=(0,2) $\end{document} ![]()
![]()
\begin{document}$ {3}/{2}^{+} $\end{document} ![]()
![]()
\begin{document}$ {5}/{2}^{+} $\end{document} ![]()
![]()
\begin{document}$ {3}/{2}^{+} $\end{document} ![]()
![]()
\begin{document}${5}/{2}^{+} $\end{document} ![]()
![]()
\begin{document}$ 1D $\end{document} ![]()
![]()
\begin{document}$2D ~\Xi_{b}$\end{document} ![]()
![]()
\begin{document}$ \Lambda_{b} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Recently, scientists have achieved significant progress in experiments searching for excited
			            2022, 46(9): 093103. doi: 10.1088/1674-1137/ac6e35 
	   					
		        	
			        
		            	
		        
					Abstract: 
The minimal supersymmetric extension of the standard model (MSSM) is extended to the\begin{document}$ U(1)_X $\end{document} ![]()
![]()
\begin{document}$S U(3)_C \times S U(2)_L \times U(1)_Y \times U(1)_X$\end{document} ![]()
![]()
\begin{document}$ U(1)_X $\end{document} ![]()
![]()
\begin{document}$ \hat{\eta},\; \hat{\bar{\eta}},\; \hat{S} $\end{document} ![]()
![]()
\begin{document}$ \hat{\nu}_i $\end{document} ![]()
![]()
\begin{document}$ U(1)_X $\end{document} ![]()
![]()
\begin{document}$ U(1)_X $\end{document} ![]()
![]()
\begin{document}$ (\theta_S, \theta_{BB^{\prime}}, \theta_{BL}) $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The minimal supersymmetric extension of the standard model (MSSM) is extended to the
			            2022, 46(9): 093104. doi: 10.1088/1674-1137/ac6e37 
	   					
		        	
			        
		            	
		        
					Abstract: 
In this paper, we present the universal structure of the alphabet of one-loop Feynman integrals. The letters in the alphabet are calculated using the Baikov representation with cuts. We consider both convergent and divergent cut integrals and observe that letters in the divergent cases can be easily obtained from convergent cases by applying certain limits. The letters are written as simple expressions in terms of various Gram determinants. The knowledge of the alphabet enables us to easily construct the canonical differential equations of the\begin{document}$ d\log $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			In this paper, we present the universal structure of the alphabet of one-loop Feynman integrals. The letters in the alphabet are calculated using the Baikov representation with cuts. We consider both convergent and divergent cut integrals and observe that letters in the divergent cases can be easily obtained from convergent cases by applying certain limits. The letters are written as simple expressions in terms of various Gram determinants. The knowledge of the alphabet enables us to easily construct the canonical differential equations of the
			            2022, 46(9): 093105. doi: 10.1088/1674-1137/ac6ed2 
	   					
		        	
			        
		            	
		        
					Abstract: 
There may be seven\begin{document}$ \bar D^{(*)} \Sigma_c^{(*)} $\end{document} ![]()
![]()
\begin{document}$ \Lambda_b^0 $\end{document} ![]()
![]()
\begin{document}$ {\cal{B}}(\Lambda_b^0 \to P_c K^-):{\cal{B}}(\Lambda_b^0 \to P_c^\prime K^-) $\end{document} ![]()
![]()
\begin{document}$ P_c $\end{document} ![]()
![]()
\begin{document}$ P_c^\prime $\end{document} ![]()
![]()
\begin{document}$ J/\psi p $\end{document} ![]()
![]()
\begin{document}$ {\cal{B}}(\Lambda_b^0 \to P_c K^- \to J/\psi p K^-):{\cal{B}}(\Lambda_b^0 \to P_c^\prime K^- \to J/\psi p K^-) $\end{document} ![]()
![]()
\begin{document}$ \bar D^{*} \Sigma_c^{*} $\end{document} ![]()
![]()
\begin{document}$ J^P = 1/2^- $\end{document} ![]()
![]()
\begin{document}$ 3/2^- $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			There may be seven
			            2022, 46(9): 093106. doi: 10.1088/1674-1137/ac7041 
	   					
		        	
			        
		            	
		        
					Abstract: 
Using the Bethe-Salpeter equation (BSE), we investigate the forward-backward asymmetries\begin{document}$ (A _{\rm FB})  $\end{document} ![]()
![]()
\begin{document}$ \Lambda_b \rightarrow \Lambda l^+ l^-(l=e,\mu,\tau) $\end{document} ![]()
![]()
\begin{document}$ \Lambda_b \rightarrow \Lambda l^+ l^- $\end{document} ![]()
![]()
\begin{document}$ A^l_{\rm FB} $\end{document} ![]()
![]()
\begin{document}$ \bar{A}^l_{\rm FB}(\Lambda_b \rightarrow $\end{document} ![]()
![]()
\begin{document}$ \Lambda e^+ e^-) \simeq -0.1371 $\end{document} ![]()
![]()
\begin{document}$ \bar{A}^l_{\rm FB}(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-) \simeq -0.1376 $\end{document} ![]()
![]()
\begin{document}$ \bar{A}^l_{\rm FB}(\Lambda_b \rightarrow \Lambda \tau^+ \tau^-) \simeq $\end{document} ![]()
![]()
\begin{document}$  -0.1053 $\end{document} ![]()
![]()
\begin{document}$ \bar{A}^h_{\rm FB}(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)\simeq -0.2315 $\end{document} ![]()
![]()
\begin{document}$ \bar{A}^{lh}_{\rm FB}(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)\simeq 0.0827 $\end{document} ![]()
![]()
\begin{document}$ \bar{F}_L(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)\simeq 0.5681 $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Using the Bethe-Salpeter equation (BSE), we investigate the forward-backward asymmetries
			            2022, 46(9): 093107. doi: 10.1088/1674-1137/ac71a6 
	   					
		        	
			        
		            	
		        
					Abstract: 
Recently, the Muon g-2 experiment at Fermilab measured the muon anomalous magnetic dipole moment (MDM),\begin{document}$ a_\mu=(g_\mu-2)/2 $\end{document} ![]()
![]()
\begin{document}$ \mu\nu $\end{document} ![]()
![]()
\begin{document}$ \mu\nu $\end{document} ![]()
![]()
\begin{document}$ \bar{B}\rightarrow X_s\gamma $\end{document} ![]()
![]()
\begin{document}$ a_e=(g_e-2)/2 $\end{document} ![]()
![]()
\begin{document}$ a_\tau=(g_\tau-2)/2 $\end{document} ![]()
![]()
\begin{document}$ \mu\nu $\end{document} ![]()
![]()
\begin{document}$ \mu\nu $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Recently, the Muon g-2 experiment at Fermilab measured the muon anomalous magnetic dipole moment (MDM),
			            2022, 46(9): 093108. doi: 10.1088/1674-1137/ac7200 
	   					
		        	
			        
		            	
		        
					Abstract: 
If two annihilation products of dark matter (DM) particles are non-relativistic and couple to a light force mediator, their plane wave functions are modified due to multiple exchanges of the force mediator. This gives rise to the final state Sommerfeld (FSS) effect. It is also possible that the final state particles form a bound state. Both the FSS effect and final bound-state (FBS) effect need to be considered in the calculation of the DM relic abundance. The annihilation products can be non-relativistic if their masses are comparable to those of the annihilating DM particles. We study the FSS and FBS effects in the mass-degenerate region using two specific models. Both models serve to illustrate different partial-wave contributions in the calculations of the FSS and FBS effects. We find that the FBS effect can be comparable to the FSS effect when the annihilation products couple strongly with a light force mediator. Those effects significantly modify the DM relic abundance.
		       
		        
		        
		        
			  
			If two annihilation products of dark matter (DM) particles are non-relativistic and couple to a light force mediator, their plane wave functions are modified due to multiple exchanges of the force mediator. This gives rise to the final state Sommerfeld (FSS) effect. It is also possible that the final state particles form a bound state. Both the FSS effect and final bound-state (FBS) effect need to be considered in the calculation of the DM relic abundance. The annihilation products can be non-relativistic if their masses are comparable to those of the annihilating DM particles. We study the FSS and FBS effects in the mass-degenerate region using two specific models. Both models serve to illustrate different partial-wave contributions in the calculations of the FSS and FBS effects. We find that the FBS effect can be comparable to the FSS effect when the annihilation products couple strongly with a light force mediator. Those effects significantly modify the DM relic abundance.
			            2022, 46(9): 093109. doi: 10.1088/1674-1137/ac7299 
	   					
		        	
			        
		            	
		        
					Abstract: 
The two-photon radiative decay process\begin{document}$ J/\psi \to 2\gamma+hadrons $\end{document} ![]()
![]()
\begin{document}$ J/\psi \to 2\gamma + g g g $\end{document} ![]()
![]()
\begin{document}$ J/\psi \to 2\gamma + q \bar{q} $\end{document} ![]()
![]()
\begin{document}$ e^{+} e^{-} \to \gamma \gamma + hadrons (q \bar{q}) $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The two-photon radiative decay process
			            2022, 46(9): 093110. doi: 10.1088/1674-1137/ac7317 
	   					
		        	
			        
		            	
		        
					Abstract: 
The influence of the isospin-breaking\begin{document}$ \pi^0  - \eta - \eta' $\end{document} ![]()
![]()
\begin{document}$ CP $\end{document} ![]()
![]()
\begin{document}$ B\to K\pi $\end{document} ![]()
![]()
\begin{document}$ CP $\end{document} ![]()
![]()
\begin{document}$ B\to K\pi $\end{document} ![]()
![]()
\begin{document}$ CP $\end{document} ![]()
![]()
\begin{document}$ B^+\to K^+\pi^0 $\end{document} ![]()
![]()
\begin{document}$ B^0\to K^+\pi^- $\end{document} ![]()
![]()
\begin{document}$ K\pi $\end{document} ![]()
![]()
\begin{document}$ \pi^0  - \eta - \eta' $\end{document} ![]()
![]()
		       
		        
		        
			  
			The influence of the isospin-breaking
			            2022, 46(9): 093111. doi: 10.1088/1674-1137/ac745a 
	   					
		        	
			        
		            	
		        
					Abstract: 
We study the application of BCFW recursion relations to the QED process\begin{document}$0 \to e^- e^+ n \gamma$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We study the application of BCFW recursion relations to the QED process
			            2022, 46(9): 093112. doi: 10.1088/1674-1137/ac7547 
	   					
		        	
			        
		            	
		        
					Abstract: 
New physics could be explored through loop effects using the precision measurements at the Circular Electron Positron Collider (CEPC) owing to its clean collision environment and high luminosity. In this paper, we focus on two dark matter models that involve additional electroweak fermionic multiplets. We calculate their one-loop corrections in five processes, i.e.,\begin{document}$ e^+e^- \to \mu^+\mu^-, \; Zh, \; W^+W^-, \; ZZ $\end{document} ![]()
![]()
\begin{document}$ Z\gamma $\end{document} ![]()
![]()
\begin{document}$ m_{\chi^0_1} $\end{document} ![]()
![]()
\begin{document}$  \sim 150\; {\rm{GeV}} $\end{document} ![]()
![]()
\begin{document}$ \sim 450 $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			New physics could be explored through loop effects using the precision measurements at the Circular Electron Positron Collider (CEPC) owing to its clean collision environment and high luminosity. In this paper, we focus on two dark matter models that involve additional electroweak fermionic multiplets. We calculate their one-loop corrections in five processes, i.e.,
			            2022, 46(9): 094001. doi: 10.1088/1674-1137/ac6dab 
	   					
		        	
			        
		            	
		        
					Abstract: 
The positive-parity signature partner bands in 103,105Pd and 109Cd nuclei are investigated using the classical particle-rotor model. Based on the systematic study of neighbouring nuclei, the signature partner bands of 105Pd are assigned to the\begin{document}$ \pi(g_{9/2}^{-4}) \otimes \nu(g_{7/2}h_{11/2}^{2}) $\end{document} ![]()
![]()
\begin{document}$ B(E2) $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The positive-parity signature partner bands in 103,105Pd and 109Cd nuclei are investigated using the classical particle-rotor model. Based on the systematic study of neighbouring nuclei, the signature partner bands of 105Pd are assigned to the
			            2022, 46(9): 094002. doi: 10.1088/1674-1137/ac6f4f 
	   					
		        	
			        
		            	
		        
					Abstract: 
Excited states of 119Sn have been studied using an in-beam γ-ray spectroscopic technique following the incomplete fusion of 7Li on a 116Cd target at a beam energy of 42 MeV. A new bandlike structure is proposed to result from deformed two-particle-two-hole (2p-2h) proton excitations across the Z = 50 closed shell based on the systematics of odd-A Sn isotopes and configuration-fixed constrained triaxial relativistic mean-field calculations. This observation extends the boundaries of the deformed 2p-2h collective band to A = 119 in Sn isotopes.
		       
		        
		        
		        
			  
			Excited states of 119Sn have been studied using an in-beam γ-ray spectroscopic technique following the incomplete fusion of 7Li on a 116Cd target at a beam energy of 42 MeV. A new bandlike structure is proposed to result from deformed two-particle-two-hole (2p-2h) proton excitations across the Z = 50 closed shell based on the systematics of odd-A Sn isotopes and configuration-fixed constrained triaxial relativistic mean-field calculations. This observation extends the boundaries of the deformed 2p-2h collective band to A = 119 in Sn isotopes.
			            2022, 46(9): 094003. doi: 10.1088/1674-1137/ac73e8 
	   					
		        	
			        
		            	
		        
					Abstract: 
This study measured the yields of the radionuclides 82Sr, 83(m+g)Sr, 85mSr, 85gSr, 87mSr, 81(g+0.976m)Rb, 82mRb, 83gRb, 84(m+g)Rb, and 86(m+g)Rb produced in natSr(γ, xnyp) multiparticle reactions with bremsstrahlung end-point energies of 55, 60, and 65 MeV. The bremsstrahlung radiation was generated using the 100-MeV electron linear accelerator at the Pohang Accelerator Laboratory, Korea, and the reaction yields were derived from the induced activitiesmeasured using off-line γ-ray spectrometry. To obtain accurate experimental results, we performed the necessary γ-rayinterference corrections. The experimental results were compared with the theoretical predictions obtained usingthe TALYS-1.95 statistical nuclear model code. The calculations were performed using six different level-density models to ascertain which model best fitted the experimental results. The dependence of the reaction yield on the incident bremsstrahlung energy and on the number of nucleons emitted by the photonuclear reactions was also investigated.
		       
		        
		        
		        
			  
			This study measured the yields of the radionuclides 82Sr, 83(m+g)Sr, 85mSr, 85gSr, 87mSr, 81(g+0.976m)Rb, 82mRb, 83gRb, 84(m+g)Rb, and 86(m+g)Rb produced in natSr(γ, xnyp) multiparticle reactions with bremsstrahlung end-point energies of 55, 60, and 65 MeV. The bremsstrahlung radiation was generated using the 100-MeV electron linear accelerator at the Pohang Accelerator Laboratory, Korea, and the reaction yields were derived from the induced activitiesmeasured using off-line γ-ray spectrometry. To obtain accurate experimental results, we performed the necessary γ-rayinterference corrections. The experimental results were compared with the theoretical predictions obtained usingthe TALYS-1.95 statistical nuclear model code. The calculations were performed using six different level-density models to ascertain which model best fitted the experimental results. The dependence of the reaction yield on the incident bremsstrahlung energy and on the number of nucleons emitted by the photonuclear reactions was also investigated.
			            2022, 46(9): 094101. doi: 10.1088/1674-1137/ac6dac 
	   					
		        	
			        
		            	
		        
					Abstract: 
The collinearly-improved Balitsky-Kovchegov (ciBK) equation evolved unintegrated gluon distribution (UGD) is used for the first time to study hadron production in high energy proton-proton collisions in order to improve the predictive power of the Color Glass Condensate effective theory. We show that the ciBK equation evolved UGD provides a relatively better description of LHC data on the transverse momentum and integrated multiplicity distributions of charged hadron and neutral pion production for several collision energies compared with the running coupling Balitsky-Kovchegov (rcBK) equation evolved UGD. This is because the ciBK evolved UGD has a sharper transverse momentum distribution than the rcBK UGD. The impact of running coupling prescriptions on hadron production is studied, and it is found that the parent dipole and smallest dipole running coupling prescriptions provide similar depictions of the data. Moreover, the scale dependence of the fragmentation function is investigated by taking three typical values of scale. We find that the differences resulting from the scale dependence of the fragmentation function can be fully absorbed into the normalization factor, which lumps higher order corrections.
		       
		        
		        
		        
			  
			The collinearly-improved Balitsky-Kovchegov (ciBK) equation evolved unintegrated gluon distribution (UGD) is used for the first time to study hadron production in high energy proton-proton collisions in order to improve the predictive power of the Color Glass Condensate effective theory. We show that the ciBK equation evolved UGD provides a relatively better description of LHC data on the transverse momentum and integrated multiplicity distributions of charged hadron and neutral pion production for several collision energies compared with the running coupling Balitsky-Kovchegov (rcBK) equation evolved UGD. This is because the ciBK evolved UGD has a sharper transverse momentum distribution than the rcBK UGD. The impact of running coupling prescriptions on hadron production is studied, and it is found that the parent dipole and smallest dipole running coupling prescriptions provide similar depictions of the data. Moreover, the scale dependence of the fragmentation function is investigated by taking three typical values of scale. We find that the differences resulting from the scale dependence of the fragmentation function can be fully absorbed into the normalization factor, which lumps higher order corrections.
			            2022, 46(9): 094102. doi: 10.1088/1674-1137/ac6ed3 
	   					
		        	
			        
		            	
		        
					Abstract: 
Multinucleon transfer reactions near the Coulomb barrier are investigated based on the improved dinuclear system (DNS) model, and the deexcitation process of primary fragments are described using the statistical model GEMINI++. The production cross sections of\begin{document}$ ^{40,48} $\end{document} ![]()
![]()
\begin{document}$ ^{124} $\end{document} ![]()
![]()
\begin{document}$ ^{64} $\end{document} ![]()
![]()
\begin{document}$ ^{130} $\end{document} ![]()
![]()
\begin{document}$ 40 \leq Z \leq 60 $\end{document} ![]()
![]()
\begin{document}$ 40 \leq Z \leq 60 $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Multinucleon transfer reactions near the Coulomb barrier are investigated based on the improved dinuclear system (DNS) model, and the deexcitation process of primary fragments are described using the statistical model GEMINI++. The production cross sections of
			            2022, 46(9): 094103. doi: 10.1088/1674-1137/ac6f4e 
	   					
		        	
			        
		            	
		        
					Abstract: 
Based on the current measurement of the neutron distribution radius (\begin{document}$ R_n $\end{document} ![]()
![]()
\begin{document}$ \Lambda_{\omega} $\end{document} ![]()
![]()
\begin{document}$ g_{\rho} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Based on the current measurement of the neutron distribution radius (
			            2022, 46(9): 094104. doi: 10.1088/1674-1137/ac6fc8 
	   					
		        	
			        
		            	
		        
					Abstract: 
Charmonium dissociation is an important probe of the quark–gluon plasma medium in heavy-ion collisions. The magnetic field produced in non-central collisions can affect the charmonia and their dissociation. We study the\begin{document}$ c\bar{c} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Charmonium dissociation is an important probe of the quark–gluon plasma medium in heavy-ion collisions. The magnetic field produced in non-central collisions can affect the charmonia and their dissociation. We study the
			            2022, 46(9): 094105. doi: 10.1088/1674-1137/ac7201 
	   					
		        	
			        
		            	
		        
					Abstract: 
Light mesons\begin{document}$ (\sigma, \pi^0, \pi^\pm) $\end{document} ![]()
![]()
\begin{document}$ \mu_B-T-eB $\end{document} ![]()
![]()
\begin{document}$ \mu_I-T-eB $\end{document} ![]()
![]()
\begin{document}$ \mu_B-T-eB $\end{document} ![]()
![]()
\begin{document}$ \pi^0 $\end{document} ![]()
![]()
\begin{document}$ \pi^0 $\end{document} ![]()
![]()
\begin{document}$ \pi^0 $\end{document} ![]()
![]()
\begin{document}$ \pi^0 $\end{document} ![]()
![]()
\begin{document}$ \mu_B-T $\end{document} ![]()
![]()
\begin{document}$ \pi^0 $\end{document} ![]()
![]()
\begin{document}$ \mu_I-T $\end{document} ![]()
![]()
\begin{document}$ \pi^+ $\end{document} ![]()
![]()
\begin{document}$ \pi^0 $\end{document} ![]()
![]()
\begin{document}$ \pi^0 $\end{document} ![]()
![]()
\begin{document}$ \pi^+ $\end{document} ![]()
![]()
\begin{document}$ \pi^+ $\end{document} ![]()
![]()
\begin{document}$ \pi^+ $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Light mesons
			            2022, 46(9): 095101. doi: 10.1088/1674-1137/ac6dc8 
	   					
		        	
			        
		            	
		        
					Abstract: 
The dependence of the black hole (BH) shadow and thermodynamics may be structured in regular spacetime. Taking a regular Bardeen-AdS BH as an example, the relationship between the shadow radius and event horizon radius is derived. It is found that these two radii display a positive correlation, implying that the BH temperature can be rewritten as a function of shadow radius in regular spacetime. By analyzing the phase transition curves under the shadow context, we find that the shadow radius can replace the event horizon radius to present the BH phase transition process, and the phase transition grade can also be revealed by the shadow radius, indicating that the shadow radius may serve as a probe for phase structure in regular spacetime. Utilizing the temperature-shadow radius function, the thermal profile of the Bardeen-AdS BH is established. Moreover, the temperature exhibits an N-type change trend in the\begin{document}$ P<P_{\rm{c}} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The dependence of the black hole (BH) shadow and thermodynamics may be structured in regular spacetime. Taking a regular Bardeen-AdS BH as an example, the relationship between the shadow radius and event horizon radius is derived. It is found that these two radii display a positive correlation, implying that the BH temperature can be rewritten as a function of shadow radius in regular spacetime. By analyzing the phase transition curves under the shadow context, we find that the shadow radius can replace the event horizon radius to present the BH phase transition process, and the phase transition grade can also be revealed by the shadow radius, indicating that the shadow radius may serve as a probe for phase structure in regular spacetime. Utilizing the temperature-shadow radius function, the thermal profile of the Bardeen-AdS BH is established. Moreover, the temperature exhibits an N-type change trend in the
			            2022, 46(9): 095102. doi: 10.1088/1674-1137/ac6ed4 
	   					
		        	
			        
		            	
		        
					Abstract: 
One of the fundamental challenges in cosmic ray physics is to explain the nature of cosmic ray acceleration and propagation mechanisms. Owing to the precise cosmic ray data measured by recent space experiments, we can investigate cosmic ray acceleration and propagation models more comprehensively and reliably. In this paper, we combine the secondary-to-primary ratios and primary spectra measured by PAMELA, AMS02, ACE-CRIS, and Voyager-1 to constrain the cosmic ray source and transport parameters. The study shows that the\begin{document}$ Z>2 $\end{document} ![]()
![]()
\begin{document}$ \delta_{2}\sim\left(0.42, 0.48\right) $\end{document} ![]()
![]()
\begin{document}$ \delta_{3}\sim\left(0.22, 0.34\right) $\end{document} ![]()
![]()
\begin{document}$ Z\leq2 $\end{document} ![]()
![]()
\begin{document}$ \delta_{2}\sim\left(0.38, 0.47\right) $\end{document} ![]()
![]()
\begin{document}$ \delta_{3}\sim\left(0.21, 0.30\right) $\end{document} ![]()
![]()
\begin{document}$ \Delta\delta_{H} $\end{document} ![]()
![]()
\begin{document}$ 200\sim300 $\end{document} ![]()
![]()
\begin{document}$ \Delta\delta_{L} $\end{document} ![]()
![]()
\begin{document}$ v_{A} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			One of the fundamental challenges in cosmic ray physics is to explain the nature of cosmic ray acceleration and propagation mechanisms. Owing to the precise cosmic ray data measured by recent space experiments, we can investigate cosmic ray acceleration and propagation models more comprehensively and reliably. In this paper, we combine the secondary-to-primary ratios and primary spectra measured by PAMELA, AMS02, ACE-CRIS, and Voyager-1 to constrain the cosmic ray source and transport parameters. The study shows that the
			            2022, 46(9): 095103. doi: 10.1088/1674-1137/ac70ad 
	   					
		        	
			        
		            	
		        
					Abstract: 
We study the linear instability and nonlinear dynamical evolution of the Reissner-Nordström (RN) black hole in the Einstein-Maxwell-scalar theory in asymptotic flat spacetime. We focus on the coupling function\begin{document}$f(\phi)={\rm e}^{-b\phi^2}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We study the linear instability and nonlinear dynamical evolution of the Reissner-Nordström (RN) black hole in the Einstein-Maxwell-scalar theory in asymptotic flat spacetime. We focus on the coupling function
			            2022, 46(9): 095104. doi: 10.1088/1674-1137/ac74b0 
	   					
		        	
			        
		            	
		        
					Abstract: 
This paper examines traversable wormhole models in the\begin{document}$ f(R) $\end{document} ![]()
![]()
\begin{document}$ f(R) $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			This paper examines traversable wormhole models in the
ISSN 1674-1137 CN 11-5641/O4
Original research articles, Ietters and reviews Covering theory and experiments in the fieids of
- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology
Author benefits
- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles
News
	
- Chinese Physics C Outstanding Reviewer Award 2023
- Impact factor of Chinese Physics C is 3.6 in 2022
- 2022 CPC Outstanding Reviewer Awards
- The 2023 Chinese New Year-Office closure
- ãChinese Physics CãBEST PAPER AWARDS 2022
Cover Story
    
- Cover Story (Issue 9, 2025): Precise measurement of Ïc0 resonance parameters and branching fractions of Ïc0,c2âÏï¼Ïï¼/ K+K-
- Cover Story (Issue 8, 2025) A Novel Perspective on Spacetime Perturbations: Bridging Riemannian and Teleparallel Frameworks
- Cover Story (Issue 7, 2025) Evidence of the negative parity linear chain states in 16C
- Cover Story (Issue 1, 2025) Comments on Prediction of Energy Resolution inthe JUNO Experiment
- Cover Story (Issue 12, 2024) | Doubly heavy meson puzzle: precise prediction of the mass spectra and hadronic decay with coupled channel effects to hunt for beauty-charm family













 
    	     
		    

