Bipartite entanglement in spin-1/2 Heisenberg model

Get Citation
HU Ming-Liang and TIAN Dong-Ping. Bipartite entanglement in spin-1/2 Heisenberg model[J]. Chinese Physics C, 2008, 32(4): 303-307. doi: 10.1088/1674-1137/32/4/013
HU Ming-Liang and TIAN Dong-Ping. Bipartite entanglement in spin-1/2 Heisenberg model[J]. Chinese Physics C, 2008, 32(4): 303-307.  doi: 10.1088/1674-1137/32/4/013 shu
Milestone
Received: 2007-07-16
Revised: 2007-11-16
Article Metric

Article Views(5208)
PDF Downloads(671)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Bipartite entanglement in spin-1/2 Heisenberg model

    Corresponding author: HU Ming-Liang,

Abstract: 

The bipartite entanglement of the two- and three-spin Heisenberg model was investigated by using the concept of negativity. It is found that for the ground-state entanglement of the two-spin model, the negativity always decreases as B increases if Δ<γ-1, and it may keep a steady value of 0.5 in the region of B<J[(Δ+1)2-γ2]1/2 if Δ>γ-1, while for that of the three-spin model, the negativity exhibits square wave structures if γ=0 or Δ=0. For thermal states, there are two areas showing entanglement, namely, the main region and the sub-region. The main region exists only when Δ>Δcc=γ-1 and (γ2-1)/2 for the 2- and 3-spin model respectively) and extends in terms of B and T as Δ increases, while the sub-region survives only when γ≠0 and shrinks in terms of B and T as Δ increases.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return