Quasielastic electron scattering in a derivative coupling model with relativistic random phase approximation

  • We apply the derivative coupling model with ZM and ZM3 parameters to investigate the longitudinal response function in quasielastic electron scattering in the relativistic random phase approximation. The non-spectral method is chosen to describe the nucleon Green's function in a finite nucleus. Some remarks have been made in conclusion.
      PCAS:
  • 加载中
  • [1] Serot B D, Walecka J D. In Advances in Nuclear Physics. Edited by Negele J W, Vogt E. New York: Plenum Press, 1986, 16: 1[2] Reinhard P G. Rep. Prog. Phys., 1989, 1: 147[3] Ring P. Prog. Part. Nucl. Phys., 1996, 37: 193[4] Bender M, Heenen P H, Reinhard P G. Rev. Mod. Phys., 2003, 75: 121[5] MENG J, Toki H, ZHOU S G, ZHANG S Q, LONG W H, GENG L S. Prog. Part. Nucl. Phys., 2006, 57: 470[6] Zimányi J, Moszkowski S. Phys. Rev. C, 1990, 42: 1416[7] Delfino A, Coelho C T, Malheiro M. Phys. Lett. B, 1995, 345: 361[8] Chiapparini M, Delfino A, Malheiro M, Gattone A. Z. Phys. A, 1997, 357: 47[9] Malheiro M, Delfino A, Coelho C T. Phys. Rev. C, 1998, 58: 426[10] WANG G H, FU W J, LIU Y X. Phys. Rev. C, 2007, 76: 065802[11] MA Z Y, Giai N V, Wandelt A, Vretenar D, Ring P. Nucl. Phys. A, 2001, 686: 173[12] Piekarewicz J. Phys. Rev. C, 2001, 64: 024307[13] MA Z Y, Wandelt A, Giai N V, Vretenar D, Ring P, CAO L G. Nucl. Phys. A, 2002 703: 222[14] YANG D, CAO L G, TIAN Y, MA Z Y. Phys. Rev. C, 2010, 82: 054305[15] Shepard J R, Rost E, McNeil J A. Phys. Rev. C, 1989, 40: 2320[16] YANG D, CAO L G, MA Z Y. Commun. Theor. Phys., 2010, 53: 716[17] Hhler G et al. Nucl. Phys. B, 1976, 114: 505[18] Aguirrea R, de Paoli A L. Eur. Phys. J. A, 2002, 13: 501[19] CHEN Y J, GUO H. Eur. Phys. J. A, 2005, 24: 211[20] Meziani Z E et al. Phys. Rev. Lett., 1984, 52: 2130[21] Kurasawa H, Suzuki Y. Nucl. Phys. A, 1985, 445: 685[22] Kurasawa H, Suzuki Y. Phys. Lett. B, 1986, 173: 377[23] Wehrberger K, Beck F. Phys. Rev. C, 1987, 35: 298[24] LI N, YAO H B, CHEN X, WU S S. Chin. Phys. C (HEP NP), 2010, 34(12): 1830
  • 加载中

Get Citation
CHEN Yan-Jun. Quasielastic electron scattering in a derivative coupling model with relativistic random phase approximation[J]. Chinese Physics C, 2013, 37(7): 074101. doi: 10.1088/1674-1137/37/7/074101
CHEN Yan-Jun. Quasielastic electron scattering in a derivative coupling model with relativistic random phase approximation[J]. Chinese Physics C, 2013, 37(7): 074101.  doi: 10.1088/1674-1137/37/7/074101 shu
Milestone
Received: 2012-05-06
Revised: 1900-01-01
Article Metric

Article Views(2057)
PDF Downloads(251)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quasielastic electron scattering in a derivative coupling model with relativistic random phase approximation

    Corresponding author: CHEN Yan-Jun,
  • Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004, China

Abstract: We apply the derivative coupling model with ZM and ZM3 parameters to investigate the longitudinal response function in quasielastic electron scattering in the relativistic random phase approximation. The non-spectral method is chosen to describe the nucleon Green's function in a finite nucleus. Some remarks have been made in conclusion.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return