Energy loss of charm quarks from J/ψ production incold nuclear matter

Get Citation
SONG Li-Hua, MIAO Wen-Dan and DUAN Chun-Gui. Energy loss of charm quarks from J/ψ production incold nuclear matter[J]. Chinese Physics C, 2014, 38(12): 124103. doi: 10.1088/1674-1137/38/12/124103
SONG Li-Hua, MIAO Wen-Dan and DUAN Chun-Gui. Energy loss of charm quarks from J/ψ production incold nuclear matter[J]. Chinese Physics C, 2014, 38(12): 124103.  doi: 10.1088/1674-1137/38/12/124103 shu
Milestone
Received: 2014-01-24
Revised: 2014-05-28
Article Metric

Article Views(1837)
PDF Downloads(152)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Energy loss of charm quarks from J/ψ production incold nuclear matter

    Corresponding author: MIAO Wen-Dan,

Abstract: J/ψ suppression in p-A collisions is studied by considering the nuclear effects on parton distribution, energy loss of beam proton and the finial state energy loss of color octet cc. The leading-order computations for J/ψ production cross-section ratios RW/Be(xF) are presented and compared with the selected E866 experimental data with the cc remaining colored on its entire path in the medium. It is shown that the combination of the different nuclear effects accounts quite well for the observed J/ψ suppression in the experimental data. It is found that the J/ψ suppression on RW/Be(xF) from the initial state nuclear effects is more important than that induced by the energy loss of color octet cc in the large xF region. Whether the cc pair energy loss is linear or quadratic with the path length is not determined. The obtained cc pair energy loss per unit path length α=2.78±0.81 GeV/fm, which indicates that the heavy quark in cold nuclear matter can lose more energy compared to the outgoing light quark.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return