Particle-number fluctuation of pairing correlations for Dy isotopes

  • Within the relativistic mean field (RMF) theory, the ground state properties of dysprosium isotopes are studied using the shell-model-like approach (SLAP), in which pairing correlations are treated with particle-number conservation, and the Pauli blocking effects are taken into account exactly. For comparison, calculations of the Bardeen-Cooper-Schrieffer (BCS) model with the RMF are also performed. It is found that the RMF+SLAP calculation results, as well as the RMF+BCS ones, reproduce the experimental binding energies and one- and two-neutron separation energies quite well. However, the RMF+BCS calculations give larger pairing energies than those obtained by the RMF+SLAP calculations, in particular for nuclei near the proton and neutron drip lines. This deviation is discussed in terms of the BCS particle-number fluctuation, which leads to the sizable deviation of pairing energies between the RMF+BCS and RMF+SLAP models, where the fluctuation of the particle number is eliminated automatically.
      PCAS:
    • 21.60.Jz(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
    • 21.60.Cs(Shell model)
  • [1] Walecka J D. Ann. Phys., 1974, 83(2): 491-529[2] Serot B D, Walecka J D. Adv. Nucl. Phys., 1986, 16: 1[3] Reinhard P G. Rep. Prog. Phys., 1989, 52: 439-514[4] Gambhir Y K, Ring P, Thimet A. Ann. Phys. New York, 1990, 194: 132-179[5] Ring P. Prog. Part. Nucl. Phys., 1996, 37: 193-263[6] MENG J, Toki H, ZHOU S G et al. Prog. Part. Nucl. Phys., 2006, 57: 470-563[7] Vretenar D, Afanasiev A V, Lalazissis G A. Phys. Rep., 2005, 409: 101-259[8] MENG J. Nucl. Phys. A, 1998, 635: 3-42[9] ZHAO P W, PENG J, LIANG H Z et al. Phys. Rev. Lett., 2011, 107: 122501[10] ZHAO P W, PENG J, LIANG H Z et al. Phys. Rev. C, 2012, 85: 054310[11] CAO L G, MA Z Y. Phys. Rev. C, 2002, 66: 024311[12] MA Z Y, Wandelt A, Giai N V et al. Nucl. Phys. A, 2002, 703: 222-239[13] REN Z Z, Toki H. Nucl. Phys. A, 2001, 689: 691-706[14] Knig J, Ring P. Phys. Rev. Lett., 1993, 71: 3079-3082[15] Arima A, Harvey M, Shimizu K. Phys. Lett. Sect. B, 1969, 30: 517-522[16] Ginocchio J N. Phys. Rev. Lett., 1997, 78: 436[17] Joseph N, Ginocchio. Phys. Rep., 2005, 414(4-5): 165-261[18] MENG J, Sugawara-Tanabe K, Yamaji S et al. Phys. Rev. C, 1998, 58(2): R628[19] LIANG H Z, SHEN S H, ZHAO P W et al. Phys. Rev. C, 2013, 87: 014334[20] LV B N, ZHAO E G, ZHOU S G. Phys. Rev. C, 2013, 88: 024323[21] GENG L S, Toki H, Sugimoto S, MENG J. Prog. Theor. Phys., 2003, 110: 921[22] TIAN Y, MA Z Y, Ring P. Phys. Rev. C, 2009, 80: 024313[23] MENG J, GUO J Y, LIU L et al. Front. Phys. China, 2006, 1: 38-46[24] ZENG J Y, CHENG T S. Nucl. Phys. A, 1983, 405: 1-28[25] ZENG J Y, LEI Y A, JIN T H et al. Phys Rev C, 1994, 50: 746[26] LIU S X, ZENG J Y. Phys. Rev. C, 2002, 66(6): 067301[27] LIU S X, ZENG J Y, ZHAO E G. Phys. Rev. C, 2002, 66(2): 024320[28] WU X, ZHANG Z H, ZENG J Y et al. Phys. Rev. C, 2011, 83(3): 034323[29] ZHANG Z H, HE X T, ZENG J Y et al. Phys. Rev. C, 2012, 85(1): 014324[30] ZHANG Z H, MENG J, ZHAO E G et al. Phys. Rev. C, 2013, 87(5): 054308[31] LIU L, ZHAO P W. Chin. Phys. C, 2012, 36: 818-822[32] ZHANG Z H, ZHAO P W, MENG J et al. Phys. Rev. C, 2013, 87(5): 054314[33] LONG W, MENG J, Van Giai N et al. Phys. Rev. C, 2004, 69(3): 034319[34] WANG M, Audi G, Wapstra A H et al. Chin. Phys. C, 2012, 36: 1603-2014[35] Ring P, Schuck P. The Nuclear Many-Body Problem. Springer, 2004
  • [1] Walecka J D. Ann. Phys., 1974, 83(2): 491-529[2] Serot B D, Walecka J D. Adv. Nucl. Phys., 1986, 16: 1[3] Reinhard P G. Rep. Prog. Phys., 1989, 52: 439-514[4] Gambhir Y K, Ring P, Thimet A. Ann. Phys. New York, 1990, 194: 132-179[5] Ring P. Prog. Part. Nucl. Phys., 1996, 37: 193-263[6] MENG J, Toki H, ZHOU S G et al. Prog. Part. Nucl. Phys., 2006, 57: 470-563[7] Vretenar D, Afanasiev A V, Lalazissis G A. Phys. Rep., 2005, 409: 101-259[8] MENG J. Nucl. Phys. A, 1998, 635: 3-42[9] ZHAO P W, PENG J, LIANG H Z et al. Phys. Rev. Lett., 2011, 107: 122501[10] ZHAO P W, PENG J, LIANG H Z et al. Phys. Rev. C, 2012, 85: 054310[11] CAO L G, MA Z Y. Phys. Rev. C, 2002, 66: 024311[12] MA Z Y, Wandelt A, Giai N V et al. Nucl. Phys. A, 2002, 703: 222-239[13] REN Z Z, Toki H. Nucl. Phys. A, 2001, 689: 691-706[14] Knig J, Ring P. Phys. Rev. Lett., 1993, 71: 3079-3082[15] Arima A, Harvey M, Shimizu K. Phys. Lett. Sect. B, 1969, 30: 517-522[16] Ginocchio J N. Phys. Rev. Lett., 1997, 78: 436[17] Joseph N, Ginocchio. Phys. Rep., 2005, 414(4-5): 165-261[18] MENG J, Sugawara-Tanabe K, Yamaji S et al. Phys. Rev. C, 1998, 58(2): R628[19] LIANG H Z, SHEN S H, ZHAO P W et al. Phys. Rev. C, 2013, 87: 014334[20] LV B N, ZHAO E G, ZHOU S G. Phys. Rev. C, 2013, 88: 024323[21] GENG L S, Toki H, Sugimoto S, MENG J. Prog. Theor. Phys., 2003, 110: 921[22] TIAN Y, MA Z Y, Ring P. Phys. Rev. C, 2009, 80: 024313[23] MENG J, GUO J Y, LIU L et al. Front. Phys. China, 2006, 1: 38-46[24] ZENG J Y, CHENG T S. Nucl. Phys. A, 1983, 405: 1-28[25] ZENG J Y, LEI Y A, JIN T H et al. Phys Rev C, 1994, 50: 746[26] LIU S X, ZENG J Y. Phys. Rev. C, 2002, 66(6): 067301[27] LIU S X, ZENG J Y, ZHAO E G. Phys. Rev. C, 2002, 66(2): 024320[28] WU X, ZHANG Z H, ZENG J Y et al. Phys. Rev. C, 2011, 83(3): 034323[29] ZHANG Z H, HE X T, ZENG J Y et al. Phys. Rev. C, 2012, 85(1): 014324[30] ZHANG Z H, MENG J, ZHAO E G et al. Phys. Rev. C, 2013, 87(5): 054308[31] LIU L, ZHAO P W. Chin. Phys. C, 2012, 36: 818-822[32] ZHANG Z H, ZHAO P W, MENG J et al. Phys. Rev. C, 2013, 87(5): 054314[33] LONG W, MENG J, Van Giai N et al. Phys. Rev. C, 2004, 69(3): 034319[34] WANG M, Audi G, Wapstra A H et al. Chin. Phys. C, 2012, 36: 1603-2014[35] Ring P, Schuck P. The Nuclear Many-Body Problem. Springer, 2004
  • 加载中

Cited by

1. Singh, B., Chen, J. Nuclear Structure and Decay Data for A=167 Isobars[J]. Nuclear Data Sheets, 2023. doi: 10.1016/j.nds.2023.08.001
2. Lin, Y., Yan, T., Liu, L. Shell-model-like approach based on cranking covariant density functional theory to ν1h11/2band in 100Pd[J]. International Journal of Modern Physics E, 2022, 31(3): 2250035. doi: 10.1142/S0218301322500355
3. Liu, L.. Cranking covariant density functional theory with a shell-model-like approach for the superdeformed band of 42Ca[J]. International Journal of Modern Physics E, 2021, 30(7): 2150055. doi: 10.1142/S0218301321500555
4. Liu, L.. Shell-model-like approach based on cranking covariant density functional theory to the antimagnetic rotation band in Pd 101[J]. Physical Review C, 2019, 99(2): 024317. doi: 10.1103/PhysRevC.99.024317
5. Benbouzid, Y., Allal, N.H., Fellah, M. et al. Isovector pairing and particle-number fluctuation effects on the spectroscopic factors of one-proton stripping and one-neutron pick-up reactions in proton-rich nuclei[J]. Chinese Physics C, 2018, 42(8): 084104. doi: 10.1088/1674-1137/42/8/084104
6. Benbouzid, Y., Allal, N.H., Fellah, M. et al. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei[J]. Chinese Physics C, 2018, 42(4): 044103. doi: 10.1088/1674-1137/42/4/044103
Get Citation
CHENG Ming-Jian, LIU Lang and ZHANG Yi-Xin. Particle-number fluctuation of pairing correlations for Dy isotopes[J]. Chinese Physics C, 2015, 39(10): 104102. doi: 10.1088/1674-1137/39/10/104102
CHENG Ming-Jian, LIU Lang and ZHANG Yi-Xin. Particle-number fluctuation of pairing correlations for Dy isotopes[J]. Chinese Physics C, 2015, 39(10): 104102.  doi: 10.1088/1674-1137/39/10/104102 shu
Milestone
Received: 2014-11-21
Revised: 1900-01-01
Article Metric

Article Views(2601)
PDF Downloads(58)
Cited by(6)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Particle-number fluctuation of pairing correlations for Dy isotopes

    Corresponding author: LIU Lang,

Abstract: Within the relativistic mean field (RMF) theory, the ground state properties of dysprosium isotopes are studied using the shell-model-like approach (SLAP), in which pairing correlations are treated with particle-number conservation, and the Pauli blocking effects are taken into account exactly. For comparison, calculations of the Bardeen-Cooper-Schrieffer (BCS) model with the RMF are also performed. It is found that the RMF+SLAP calculation results, as well as the RMF+BCS ones, reproduce the experimental binding energies and one- and two-neutron separation energies quite well. However, the RMF+BCS calculations give larger pairing energies than those obtained by the RMF+SLAP calculations, in particular for nuclei near the proton and neutron drip lines. This deviation is discussed in terms of the BCS particle-number fluctuation, which leads to the sizable deviation of pairing energies between the RMF+BCS and RMF+SLAP models, where the fluctuation of the particle number is eliminated automatically.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return